Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A sai đề ?
1.B : \(x^2+x+6+2x\sqrt{x+3}=4\left(x+\sqrt{x+3}\right)\)
\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}=4x+4\sqrt{x+3}\)
\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}-4x-4\sqrt{x+3}=0\)
\(\Leftrightarrow x^2-3x+6+2x\sqrt{x+3}-4\sqrt{x+3}=0\)
\(\Leftrightarrow x^2-3x+6+2\sqrt{x+3}\left(x-2\right)=0\)
\(\Leftrightarrow x+3+2\sqrt{x+3}\left(x-2\right)+\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x+3}+x-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x-3}+x-3\right)\left(\sqrt{x-3}+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}+x-3=0\\\sqrt{x-3}+x-1=0\end{matrix}\right.\)
Đến đây dễ rồi
Đáp án : \(\left[{}\begin{matrix}x=3\\x=\varnothing\end{matrix}\right.\)
2.A đang nghĩ
2.B
Áp dụng bất đẳng thức Cô-si :
\(\frac{x}{\sqrt{4x-1}}+\frac{\sqrt{4x-1}}{x}\ge2\sqrt{\frac{x\left(\sqrt{4x-1}\right)}{\left(\sqrt{4x-1}x\right)}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{\sqrt{4x-1}}=\frac{\sqrt{4x-1}}{x}\)
\(\Leftrightarrow x^2=4x-1\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow x=2\pm\sqrt{3}\)( thỏa )
Vậy....
Đã là phương thì thì phải có dấu = chứ? Bạn xem lại đề.