K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

10 tháng 8 2017

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

24 tháng 6 2019

a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)

Ta thấy x=0 không là nghiệm của PT

Xét \(x\ne0\)

Khi đó PT 

<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)

Đặt \(2x+\frac{1}{x}=a\)

=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)

<=>  \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)

<=> \(6a^3-44a^2-191a-45=0\)

Xin lỗi đến đây tớ ra nghiệm không đẹp 

24 tháng 6 2019

c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)   ĐKXĐ \(x\ne-3\)

<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)

<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)

<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)

<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)

\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ

26 tháng 3 2016

ai đăng bài đi,,đang rảnh tui lm cho

26 tháng 3 2016

rảnh thì ngồi cắn móng chân đi

8 tháng 10 2016

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

6 tháng 10 2016

no biet

NV
10 tháng 8 2020

3.

ĐKXĐ: \(x\ge-1;x\ne13\)

\(\left(x+2\right)\left(\sqrt{x+1}-2\right)=\sqrt[3]{2x+1}-3\)

\(\Leftrightarrow\left(x+2\right)\sqrt{x+1}-2x-4=\sqrt[3]{2x+1}-3\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+x+1-\left(2x+1\right)-\sqrt[3]{2x+1}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt[3]{2x+1}=b\end{matrix}\right.\)

\(\Rightarrow a^3+a-b^3-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt[3]{2x+1}\) (\(x\ge-\frac{1}{2}\))

\(\Leftrightarrow\left(x+1\right)^3=\left(2x+1\right)^2\)

\(\Leftrightarrow x=?\)

NV
10 tháng 8 2020

2.

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow8x^3+2x-\left(2x+2\right)\sqrt{2x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{2x+1}=b\end{matrix}\right.\)

\(\Rightarrow a^3+a-\left(b^2+1\right)b=0\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt{2x+1}\) (\(x\ge0\))

\(\Leftrightarrow4x^2=2x+1\)

\(\Leftrightarrow x=?\)