Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
c)
\(\sqrt{\left(x-1\right)^2}=2\)
x-1=2
x=3
d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)
\(\Leftrightarrow3\sqrt{x}=3\)
<=> x=1
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b)
\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)
\(\Leftrightarrow x-2=2\)
\(\Leftrightarrow x=4\)
2 phần kia mình đăng sau (dài quá r)
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
Pt a: Đk \(1< x\le6\)
\(\frac{\sqrt{6-x}-2x+3}{\sqrt{x-1}}=\sqrt{x-1}\Rightarrow\sqrt{6-x}-2x+3=x-1\)
\(\Leftrightarrow\sqrt{6-x}=3x-4\Rightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow6-x=9x^2-24x+16\Leftrightarrow9x^2-23x+10=0\)
\(\Leftrightarrow9x^2-18x-5x+10=0\Leftrightarrow9x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(9x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{9}\left(Lọai\right)\\x=2\left(Thoả\right)\end{cases}}\)
Vậy \(S=\left\{2\right\}\)
Pt b :
Đk: \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\left(x+1\right)\sqrt{x^2-4}=2x+2\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-4}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\sqrt{x^2-4}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Lọai\right)\\\sqrt{x^2-4}=2\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4}=2\Rightarrow x^2-4=4\Leftrightarrow x^2=8\Leftrightarrow x=2\sqrt{2}\left(Thoả\right)\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)
\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Vậy............................................
\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy...............................................
ĐKXĐ: $x \geq 2$
\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)
Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)
Vậy....