Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ y(y+4)=21 -> y^2 +4y -21=0 -> (y-3)(y+7)=0
VẬY y=3, -7.
2/???
3/(y-4)(y-1)=0 -> y=4, 1
THOI, MAY CAI CO BAN SGK CUNG HOI.DẸP, TỰ LÀM NỐT ĐI, DỄ MÀ.
XONG BẤM ĐÚNG CHO MÌNH
PT <=> (x2-4x+6)(x2-4x+10)=21
<=> x4-4x3+10x2-4x3+16x2-40x+6x2-24x+60-21=0
<=> x4-8x3+32x2-64x+39=0
<=> x4-x3-7x3+7x2+25x2-25x-39x+39=0
<=> x3(x-1)-7x2(x-1)+25x(x-1)-39(x-1)=0
<=> (x-1)(x3-7x2+25x-39)=0
<=> (x-1)(x3-3x2-4x2+12x+13x-39)=0
<=> (x-1)[x2(x-3)-4x(x-3)+13(x-3)]=0
<=> (x-1)(x-3)(x2-4x+13)=0
Nhận thấy: x2-4x+13 > 0 với mọi x
=> Phương trình có nghiệm là: \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x_1=1\\x_2=3\end{cases}}\)
x²-4x+6=√(2x²-5x+3) - √(-3x²+9x-5).
Ta sẽ dùng đánh giá hai vế như sau :
VT = x²-4x+6 = x²-4x+4 + 2 = (x-2)² + 2 ≥ 2.
Dấu = xảy ra khi x = 2.
VP = √(2x²-5x+3) - √(-3x²+9x-5)
Áp dụng bất đẳng thức Bunhia Copxki ta có:
VP = √(2x²-5x+3) - √(-3x²+9x-5) ≤ √[(1² + 1²).(2x²-5x+3 - 3x²+9x-5)] = √[2.(-x²+4x-2)]
Mà: -x²+4x-2 = - ( x² - 4x+4) + 2 = -(x-2)² + 2 ≤ 2.
Do đó: VP ≤ √( 2.2) = √4 = 2.
Dấu = xảy ra khi x = 2.
Ta có: VT ≥ 2 ; VP ≤ 2 => VT = VP = 2 khi x = 2.
Vậy x = 2 là nghiệm của phương trình.
a, \(x^3-x^2+x^2-x-2x+2=x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)\left(x^2+2x-x-2\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+2\right)=\left(x-1\right)^2\left(x+2\right)\)=> x=1 hoặc x=-2
b) \(\left|\left(x-2\right)^2+3\right|+10=13\). vì (x-2)^2 >=0 với mọi x => (x-2)^2+3>0=>giá trị tuyệt đối = chính nó
\(\Leftrightarrow\left(x-2\right)^2+3=3\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
c)
th1: nếu \(x\ge-\frac{3}{4}\)=> \(x+\frac{3}{4}-4x+2=0\Rightarrow-3x=-\frac{11}{4}\Leftrightarrow x=\frac{11}{2}\)( t/m đk)
th2: Nếu \(x<-\frac{3}{4}\)=> \(-x-\frac{3}{4}-4x+2=0\Leftrightarrow-5x=-\frac{5}{4}\Leftrightarrow x=\frac{1}{4}\)(k t/m đk)
=> x=11/2
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
a) Ta có: \(x^2-4x-21>0\)
\(\Leftrightarrow x^2-4x+4-25>0\)
\(\Leftrightarrow\left(x-2\right)^2>25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>5\\x-2< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
Vậy: x>7 hoặc x<-3
\(x^4+4x^3+5x^2-4x+4=0\)
\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)
\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)
Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)
Mà ko cùng một lúc tồn tại 2 giá trị của x
\(\Rightarrow\)Phương trình vô nghiệm
Vậy ...