Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x4 - 13x2 + 36 = 0
Đặt : x2 = t , t > 0 , ta có :
t2 - 13t + 36 = 0 \(\Leftrightarrow\) t = 9 hay t = 4
- Với t = 9 \(\Rightarrow\) x2 = 9 \(\Rightarrow\) x = + 3
- Với t = 4 \(\Rightarrow\) x2 = 4 \(\Rightarrow\) x = + 2
Vậy phương trình có 4 nghiệm
x1 = 3 ; x2 = -3 ; x3 = 2 ; x4 = -2
b, 3x4 + 7x2 - 10 =0
Đặt : x2 = t , t > 0 , ta có :
3t2 + 7t - 10 = 0
\(\Leftrightarrow\) t = 1 hay t = -\(\frac{10}{3}\) (loại )
- Với t = 1 \(\Rightarrow\) x2 = 1 \(\Rightarrow\) x = +1
Phương trình có hai nghiệm là :
x1 = 1 ; x2 = -1
\(2x^4-13x^3+24x^2-13x+2=0\)
\(\Leftrightarrow2x^4-8x^3+2x^2-5x^3+20x^2-5x+2x^2-8x+2=0\)
\(\Leftrightarrow2x^2\left(x^2-4x+1\right)-5x\left(x^2-4x+1\right)+2\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow2x^2\left(x^2-4x+1\right)-5x\left(x^2-4x+1\right)+2\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-5x+2\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-4x+2\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x^2-4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2;x=\frac{1}{2}\\x=\frac{4\pm\sqrt{12}}{2}\end{cases}}\)
bạn có thể giair theo cacsh đối xứng đươcj ko cái mà chia cả 2 vế cho x2 rồi đặt ý làm phuền bạn
a. Ta có: x2-11=0
⇌ x2=11
⇌\(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)
b.Ta có: x2-2\(\sqrt{13}\)x+\(\sqrt{13}\)=0
⇌(x-\(\sqrt{13}\))2=0
⇌ x-\(\sqrt{13}\)=0
⇌ x=\(\sqrt{13}\)
c. Ta có : x2-9x+14=0
⇌ (x-7)(x-2)=0
⇌\(\left[{}\begin{matrix}x-7=0\\z-2=0\end{matrix}\right.\)⇌\(\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)
d.Ta có \(\sqrt{x}\)-6=13
⇌\(\sqrt{x}\)=19
⇌x = 361
e.Ta có: \(\sqrt{x}\)+9=3
Vì \(\sqrt{x}\)≥0∀x⇒\(\sqrt{x}\)+9≥9
⇒ ptvn
f.Ta có:\(\sqrt{x^2}\)-2x+4=x-1
⇌ |x|-3x-5=0(*)
TH1: x≥0
⇒ pt(*) ⇌ x-3x+5=0⇌-2x-5=0⇒x=\(\dfrac{5}{2}\)(t/m)
TH2: x<0
⇒ pt(*) ⇌ -x-3x+5=0⇌-4x+5=0⇒x=\(\dfrac{5}{4}\)(l)
Vậy x=\(\dfrac{5}{2}\)là nghiệm của phương trình
a) 3x4 - 13x3 + 16x2 - 13x + 3 = 0
(x - 3)(3x - 1)(x2 - x + 1) = 0
nhưng vì x2 - x + 1 # 0 nên:
x - 3 = 0 hoặc 3x - 1 = 0
x = 0 + 3 3x = 0 + 1
x = 3 3x = 1
x = 1/3
b) 6x4 + 5x3 - 38x2 + 5x + 6 = 0
(x - 2)(x + 3)(3x + 1)(2x - 1) = 0
x - 2 = 0 hoặc x + 3 = 0 hoặc 3x + 1 = 0 hoặc 2x - 1 = 0
x = 0 + 2 x = 0 - 3 3x = 0 - 1 2x = 0 + 1
x = 2 x = -3 3x = -1 2x = 1
x = -1/3 x = 1/2
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Giải giúp mình với ạ :)))) Help me