K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

127^2 + 146 x 126 + 73^2 

= 127^2 + 2 x 73 x 126 + 73 x 73

= 127^2 + 73 x ( 2 x126 + 73 )

=......

rồi sau đo tinh binh thuong mk chi co the giup vay thoi

30 tháng 9 2016

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{3004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{3}{15}-\frac{10}{15}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

30 tháng 9 2016

Câu còn lại ko làm được hả bạn

21 tháng 1 2017

ko bit

9 tháng 1 2022

Ko biết

28 tháng 7 2018

MÌNH QUÊN cách lm rùi

28 tháng 7 2018

đặt B=99/1+99/2+...+1/99

=1+(98/2+1)+(97/3+1)+...+(1/99+1)

=100/100+100/2+...+100/99

=100.(1/2+1/3+...+1/100)

=>A=(1/2+1/3+...+1/100):[100.(1/2+1/3+...+1/100)]

A=1:100=1/100

hok tốt nha

10 tháng 12 2015

Thay x=2005 vào biểu thức, ta được:

20052005-2006*20052004+...+2006*20052-2006*2005-1

=20052005-(2006*20052004-..-2006*20052+2006*2005+1)

Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)

2005A=2006*20052005-..-2006*20053+2006*20052+2005

2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004

2005A-A=2004-2005*2006

2004A=2004-2005*2006

A=(2004-2005*2006)/2004=1-(2005*2006)/2004

=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004

đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý

11 tháng 10 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

11 tháng 10 2020

Ta có:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)

\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

19 tháng 3 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)