Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: ĐK..............
PT $(1)\Rightarrow \sqrt{y+1}=\frac{x-3}{2}$
$\Rightarrow y+1=\frac{(x-3)^2}{4}$
PT $(2)\Leftrightarrow x^3-4x^2\sqrt{y+1}+4x(y+1)-8(y+1)-9x+60=0$
$\Leftrightarrow x^3-4x^2.\frac{x-3}{2}+4x.\frac{(x-3)^2}{4}-8.\frac{(x-3)^2}{4}-9x+60=0$
$\Leftrightarrow x^3-2x^2(x-3)+x(x-3)^2-2(x-3)^2-9x+60=0$
$\Leftrightarrow -x^2+6x+7=0$
$\Leftrightarrow x=7$ hoặc $x=-1$
Từ PT $(1)$ dễ thấy $x\geq 3$ nên $x=7$
$\Rightarrow y=\frac{(x-3)^2}{4}=4$
Vậy...........
Câu 1:
ĐK:..............
PT $\Leftrightarrow x-3+\sqrt{x-1}=\sqrt{2(x^2-5x+5)}$
$\Rightarrow (x-3+\sqrt{x-1})^2=2(x^2-5x+5)$
$\Leftrightarrow 2(x-3)\sqrt{x-1}=x^2-5x+2$
$\Leftrightarrow x^2-5x+2-2(x-3)\sqrt{x-1}=0$
$\Leftrightarrow (x^2-6x+9)+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3)^2+(x-1)-2(x-3)\sqrt{x-1}=6$
$\Leftrightarrow (x-3-\sqrt{x-1})^2=6$
$\Leftrightarrow x-3-\sqrt{x-1}=\pm \sqrt{6}$
$\Leftrightarrow \sqrt{x-1}=x-3\pm \sqrt{6}$
$\Rightarrow x-1=(x-3\pm \sqrt{6})^2$ (ĐK: $x\geq 3\pm \sqrt{6}$)
Giải PT ta thu được $x=\frac{1}{2}(7+2\sqrt{6}+\sqrt{9+4\sqrt{6}})$
a/
ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=3\)
b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)
Biến đổi pt dưới:
\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)
\(\Leftrightarrow x=3y+1\)
Thế vào pt trên:
\(\left(3y+1\right)^2-5y^2-8y-3=0\)
\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)
Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn
Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v
b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
Đến đây tự giải thế vào (1)
Nguyễn Việt Lâm Giải giúp t TH2 nha!
đề gì thế bạn, căn 1 thì viết vào làm gì còn mấy số díu dít vô nhau kia nx