K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b, Mk đặt số đó là B nhé để làm cái đề thôi !!!( và viết dưới dạng chia hết nhé ngại viết bằng phân số :))thay dấu chia hết thahf phân số nhé 

Để B \(\in Z\)

\(2a+9⋮a+3\)+\(5a+17⋮a+3\)-\(3a⋮a+3\)

\(=2a+9+5a+17-3a⋮a+3\)

\(=4a+26⋮a+3\)

\(=4a+12+14⋮a+3\)

\(=4a+12⋮3+14⋮a+3\)

\(=4\left(a+3\right)⋮a+3+14⋮a+3\)

\(=4+14⋮a+3\in Z\)

\(=\Rightarrow14⋮a+3\in Z\)

\(\Rightarrow14⋮a+3\)

\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\mp1;\mp2;\mp7;\mp14\right\}\)

Ta có bảng 

a+3-11-22-77-1414
a-4-2-5-1-104-1711
8 tháng 8 2016

\(A=\frac{5a^2+2a+3}{a}=5a+2+\frac{3}{a}\)

\(a\in Z\Rightarrow5a+2\in Z\)

\(\Rightarrow\)Để \(A\in Z\Rightarrow\frac{3}{a}\in Z\)

\(\Rightarrow a\in\left\{-3;-1;1;3\right\}\)

8 tháng 8 2016

A=5a+2+3/a=>a=+-1;+-3

8 tháng 8 2016

rutgon;A=5a+2+3/a=>a=+-1;+-3

19 tháng 12 2015

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS

27 tháng 6 2019

\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)

\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)

\(=\frac{1}{a-2}\)

\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)

b, Để  A có giá trị là một số nguyên thì \(1⋮a-2\)

=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)