Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)
Cộng 2 pt ta đc: x=1
Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)
Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)
Những câu sau làm ttự.
#Walker
ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?
\(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\left(1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\left(2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{15}+\sqrt{5}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{5}x-\sqrt{15}+\sqrt{5}\\x\left(15+2\sqrt{3}\right)=6+15\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{5}\end{matrix}\right.\)
ít nhất phải đánh ra thế này chớ ( thiếu kết luận bước cuối giải hệ phương trình trừ điểm : ))
Lời giải:
Đặt \((\sqrt{x-y},\sqrt{x+y})=(b,a)\)
HPT trở thành: \(\left\{\begin{matrix} a-b=2(1)\\ \sqrt{\frac{a^4+b^4}{2}}+ab=4(2)\end{matrix}\right.\)
\((2)\Leftrightarrow \sqrt{\frac{a^4+b^4}{2}}=4-ab\). Bình phương hai vế:
\(\Rightarrow \frac{a^4+b^4}{2}=16+a^2b^2-8ab\)
\(\Leftrightarrow a^4+b^4-2a^2b^2=32-16ab\)
\(\Leftrightarrow (a^2-b^2)^2=32-16ab\Leftrightarrow 4(a+b)^2=32-16ab\) (do \(a-b=2\) )
\(\Leftrightarrow (a+b)^2=8-4ab\)
Thay \(a=b+2\Rightarrow (2b+2)^2=8-4b(b+2)\)
\(\Leftrightarrow (b+1)^2=2-b(b+2)\Leftrightarrow 2b^2+4b-1=0\)
\(\Rightarrow b=\frac{-2+\sqrt{6}}{2}\) (do \(b\geq 0\))
Từ đó kéo theo \(a=\frac{2+\sqrt{6}}{2}\). Từ đây suy ra \((x,y)=(\frac{5}{2},\sqrt{6})\)