Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)
Do \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)
Do \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)
Dấu \("="\) xảy ra khi:
\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)
Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)
\(x^2-4xy+5y^2=16\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)
\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(xy+3x-y=38\)
\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)
\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)
Làm nốt
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó