K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

e chưa đến tầm đó

26 tháng 3 2018

\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)

Do \(\left(x-y+1\right)^2\ge0\forall x;y\)

\(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

26 tháng 3 2018

\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)

Do \(\left(x+y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)

Dấu \("="\) xảy ra khi:

\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)

Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)

28 tháng 6 2019

\(x^2-4xy+5y^2=16\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)

\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)

28 tháng 6 2019

\(xy+3x-y=38\)

\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)

\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)

\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)

Làm nốt

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

19 tháng 11 2018

ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)

\(\Leftrightarrow\) cái đó

18 tháng 11 2018

@Akai Haruma, @Mysterious Person