Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ đặt x+y = a
xy=b
Ta có a(a2 - 3b) = 19
a(8+b)=2
Dùng phương pháp thế rồi giải tìm được a=1; b=-6
Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2
2/ ta có 3x2 +4 xy + y2 = 0 <=> (2x+y)2 - x2 = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra
+) Xét y = 0 :
từ pt1 => x2 = 1/2
từ pt2 => x2 = 7/4 \(\ne\) 1/2
=> y = 0 không thỏa mãn hpt
Vậy y \(\ne\) 0. Khi đó, chia cả hai vế của pt1; pt2 cho y2 ta được:
pt1 <=> \(2.\left(\frac{x}{y}\right)^2-\frac{x}{y}=\frac{1}{y^2}\)(*)
pt2 <=> \(4.\left(\frac{x}{y}\right)^2+4.\frac{x}{y}-1=\frac{7}{y^2}\).(**)
Thế (*) vào (**) ta được: \(4.\left(\frac{x}{y}\right)^2+4.\frac{x}{y}-1=14.\left(\frac{x}{y}\right)^2-7.\frac{x}{y}\)
<=> \(10.\left(\frac{x}{y}\right)^2-11.\frac{x}{y}+1=0\)
GPT bậc hai ẩn x/y => x/y = 1 hoặc x/y = 1/10
+) x/y = 1 => x = y . thay vào pt 1 => x; y...
bạn tự làm tiếp nhé!
\(\hept{\begin{cases}x^2-4xy+y^2=1\\y^2-3xy=4\end{cases}}\)
\(\Rightarrow4x^2-16xy+4y^2=y^2-3xy\)
\(\Leftrightarrow4x^2-13xy+3y^2=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-3y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x=y\\x=3y\end{cases}}\)
Từ đây mỗi trường hợp thế vào phương trình \(y^2-3xy=4\).
Ta thu được nghiệm cuối cùng là: \(\left(1,4\right),\left(-1,-4\right)\).