Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
b) Lấy pt đầu trừ pt dưới thu được:
\(x^3-y^3+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)
Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)
Do đó x = y. Thay vào pt đầu thu được:
\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)
c) Lấy pt trên trừ pt dưới:
\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)
Auto làm nốt:D
P/s: Is that true?
a) \(\left\{{}\begin{matrix}x^2+y^2=10\\2\left(x+y-xy\right)=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2x+2y-2xy\\x+y-2xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=2\left(x+y\right)\\x+y-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2\left(x+y\right)=0\\x+y-xy=10\end{matrix}\right.\)
đặt x+y=t
\(\Leftrightarrow\left\{{}\begin{matrix}t\left(t-2\right)=0\\t-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\\xy=10+t\end{matrix}\right.\)
nếu t=0\(\left\{{}\begin{matrix}x+y=0\\xy=10\end{matrix}\right.\) loại
nếu t=2\(\left\{{}\begin{matrix}x+y=2\\xy=10\end{matrix}\right.\)
b)\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=12\\x+y+xy=7\end{matrix}\right.\) đặt a=x+y, b=xy
\(\Leftrightarrow\left\{{}\begin{matrix}ab=12\\a+b=7\end{matrix}\right.\)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(\Leftrightarrow2x^3=x^3+y^3\)
\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)
Thay vào pt đầu:
\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)
a/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với
Theo Viet đảo, a và b là nghiệm của:
\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)
Ta có : \(\left\{{}\begin{matrix}xy+x+y=19\left(I\right)\\x^2y+xy^2=84\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}xy+x+y=19\\xy\left(x+y\right)=84\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\xy\left(19-xy\right)=84\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\19xy-x^2y^2-84=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\x^2y^2-12xy-7xy+84=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\xy\left(xy-12\right)-7\left(xy-12\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left(xy-12\right)\left(xy-7\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left[{}\begin{matrix}xy-7=0\\xy-12=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y=19-xy\\\left[{}\begin{matrix}xy=7\\xy=12\end{matrix}\right.\end{matrix}\right.\)
TH1 : xy = 7 ( II )
=> \(x=\frac{7}{y}\)
- Thay xy = 7 ;\(x=\frac{7}{y}\) vào phương trình ( I ) ta được :
\(7+y+\frac{7}{y}=19\)
=> \(\frac{y^2}{y}+\frac{7}{y}=12\)
=> \(y^2-12y+7=0\)
=> \(y^2-2.y.6+36-29=0\)
=> \(\left(y-6\right)^2=29\)
=> \(\left[{}\begin{matrix}y-6=\sqrt{29}\\y-6=-\sqrt{29}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}y=6+\sqrt{29}\\y=6-\sqrt{29}\end{matrix}\right.\)
- Thay \(y=6+\sqrt{29};6-\sqrt{29}\) vào phương trình ( II ) ta được :
\(\left[{}\begin{matrix}x\left(6+\sqrt{29}\right)=7\\x\left(6-\sqrt{29}\right)=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{7}{6+\sqrt{29}}\\x=\frac{7}{6-\sqrt{29}}\end{matrix}\right.\)
TH2 : xy = 12 ( III )
=> \(x=\frac{12}{y}\)
- Thay xy = 12 ;\(x=\frac{12}{y}\) vào phương trình ( I ) ta được :
\(12+y+\frac{12}{y}=19\)
=> \(\frac{y^2}{y}+\frac{12}{y}=7\)
=> \(y^2-7y+12=0\)
=> \(y^2-2.y.\frac{7}{2}+\frac{49}{4}-\frac{1}{4}=0\)
=> \(\left(y-\frac{7}{2}\right)^2=\frac{1}{4}\)
=> \(\left[{}\begin{matrix}y-\frac{7}{2}=\sqrt{\frac{1}{4}}\\y-\frac{7}{2}=-\sqrt{\frac{1}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}y=\sqrt{\frac{1}{4}}+\frac{7}{2}=4\\y=\frac{7}{2}-\sqrt{\frac{1}{4}}=3\end{matrix}\right.\)
- Thay y=4 ; y=3 vào phương trình ( II ) ta được :
\(\left[{}\begin{matrix}x4=7\\x3=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{7}{3}\end{matrix}\right.\)
Vậy hệ phương trình có các nghiệm ( x; y ) là ( \(\frac{7}{4};4\) ) ; ( \(\frac{7}{3};3\) ) ;
( \(\frac{7}{6+\sqrt{29}};6+\sqrt{29}\) ) ; \(\left(\frac{7}{6-\sqrt{29}};6-\sqrt{29}\right)\)