K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)


 

6 tháng 9 2017

\(\hept{\begin{cases}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\left(1\right)\\x^3-8x-1=2\sqrt{y-2}\left(2\right)\end{cases}}\)

\(\Rightarrow\left(1\right)\Leftrightarrow\sqrt{y\left(12-x^2\right)}=12-x\sqrt{12-y}\)

\(\Leftrightarrow\left(\sqrt{y\left(12-x^2\right)}\right)^2=\left(12-x\sqrt{12-y}\right)^2\)

\(\Leftrightarrow x^2-2x\sqrt{12-y}+\left(12-y\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{12-y}\right)^2=0\)

\(\Leftrightarrow3-y=x^2-9\left(3\right)\)

Ta lại có:

\(\left(2\right)\Leftrightarrow\left(x^3-8x-3\right)=2\left(\sqrt{y-2}-1\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+1\right)=\frac{2\left(y-3\right)}{\sqrt{y-2}+1}\left(4\right)\)

Thay (3) vào (4) ta được:

\(\left(x-3\right)\left(x^2+3x+1\right)+\frac{2\left(x^2-9\right)}{\sqrt{y-2}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+1+\frac{2\left(x+3\right)}{\sqrt{y-2}+1}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

5 tháng 9 2017

Đặt \(\sqrt{x^2-x+1}=a"ĐK:a>0"\)

\(pt\Leftrightarrow\frac{"6^2+3x^4a""4-a^2"}{4"2+a"a^2}=a"2-a"\)

\(\Leftrightarrow"x^6+3x^4a""4-a^2"=4a^3"4-a^2"\)

\(\Leftrightarrow"4-a^2""x^6+3x^4a-4a^3"=0\)

TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=2\end{cases}}\)

Với \(a=2,\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)

\(\Leftrightarrow"x^2-a""x^4+4x^2a+4a^2"=0\Leftrightarrow"x^2-a""x^2+2a"^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\end{cases}}\)

Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)

P/s: Tham khảo thôi đừng có chép nguyên vào

Thay dấu ngoặc kép thành ngoặc đơn nha

4 tháng 10 2017

Vừa làm bên Học 24 xong nhưng do gửi link thì bị lỗi nên t up lại, tiện thể ăn điểm luôn (tất nhiên giúp you vẫn là lí do chính, điểm là tiện thôi :))

\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\frac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{x-y+2}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)

\(\Rightarrow x=y-2\). Thay vào \(pt\left(1\right)\) ta có:

\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)

\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)

\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)

\(\Leftrightarrow\frac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\frac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\frac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\frac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\left(y-4\right)^2\left(\frac{1}{\sqrt{y^2-8y+25}+3}-\frac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)

\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)

Vậy \(x=2;y=4\) 

4 tháng 10 2017

câu trả lời của mình là nguyễn thị chịu thua

4 tháng 10 2017

Ngồi gõ cả tiếng rồi ngộ ra mới out nick :|

\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\dfrac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\dfrac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y+2\right)\left(\dfrac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)

\(\Rightarrow x=y-2\). Thay vào \(pt(1)\) có:

\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)

\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)

\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)

\(\Leftrightarrow\dfrac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\dfrac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\dfrac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\dfrac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\left(y-4\right)^2\left(\dfrac{1}{\sqrt{y^2-8y+25}+3}-\dfrac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)

\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)

Vậy \(x=2;y=4\)

4 tháng 10 2017

tội nghiệp :))

28 tháng 10 2019

Sửa đề:

\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)

Điều kiện: \(xy\ge0\)

Xét \(x,y\le0\)

\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)

Xét \(x,y\ge0\)

\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)

Ta có: 

\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)

\(\Rightarrow x=y\)

Làm tiếp

28 tháng 10 2019

Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)

Điều kiện: \(xy\ge0\)

Xét \(x,y\le0\)

\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)

Xét \(x,y\ge0\)

Ta có:

\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)

\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)

\(\Rightarrow3\ge2x+y\left(3\right)\)

Ta có:

\(3x+10\sqrt{xy}-y=12\)

\(VT\le3x+5\left(x+y\right)-y=8x+4y\)

\(\Rightarrow12\le8x+4y\)

\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)

Làm nốt

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)