K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta thấy:

\(11=x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)\)

\(=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2\)

\(=(1-2xy)(1-3xy)-x^2y^2\)

\(\Leftrightarrow 1-5xy+5x^2y^2=11\)

\(\Leftrightarrow 5x^2y^2-5xy-10=0\)

\(\Leftrightarrow x^2y^2-xy-2=0\)

\(\Leftrightarrow (xy-2)(xy+1)=0\rightarrow \left[\begin{matrix} xy=2\\ xy=-1\end{matrix}\right.\)

Nếu $xy=2, x+y=1$ thì theo định lý Vi-et đảo thì $x,y$ là nghiệm của pt: \(X^2-X+2=0\) (dễ thấy pt này vô nghiệm nên không tìm được $x,y$ thỏa mãn)

Nếu \(xy=-1, x+y=1\). Theo định lý Vi-et đảo thì $x,y$ là nghiệm của pt: \(X^2-X-1=0\Rightarrow (x,y)=(\frac{1+\sqrt{5}}{2}; \frac{1-\sqrt{5}}{2})\) và ngược lại

Vậy..........

NV
13 tháng 5 2019

a/ Theo Viet đảo, x và y là nghiệm của pt:

\(t^2-5t+5=0\Rightarrow t=\frac{5\pm\sqrt{5}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\y=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=\frac{5-\sqrt{5}}{2}\\y=\frac{5+\sqrt{5}}{2}\end{matrix}\right.\)

b/ Đặt \(Y=-y\Rightarrow\left\{{}\begin{matrix}x+Y=1\\xY=-6\end{matrix}\right.\)

Theo Viet đảo, x và Y là nghiệm của: \(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\Y=-2\Rightarrow y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-2\\Y=3\Rightarrow y=-3\end{matrix}\right.\)

9 tháng 2 2020

ý 2

Do cắt trục tung tại điểm có tung độ bằng -4--->b=-4(1)

Cắt trục hoành tại điểm có hoành độ bằng 2

-->x=2,y=0

-->2a+b=0 hay 2a=-b(2)

Thay (1) vào (2) ta dc

2x=4

-->x=2

Vậy a=2,b=-4

9 tháng 2 2020

a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .

NV
20 tháng 1 2019

Từ pt (1) \(\Rightarrow x=8+\left|y-5\right|\ge8\Rightarrow x+1>0\)

- Nếu \(y\ge5\Rightarrow3\left|y+3\right|\ge24>21\Rightarrow\) vô nghiệm

- Nếu \(-5\le y\le5\) hệ trở thành:

\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(y+5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x+3y=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=17\\y=-4\end{matrix}\right.\)

- Nếu \(y< -5\) hệ trở thành:

\(\left\{{}\begin{matrix}x-\left(5-y\right)=8\\x+1+3\left(-y-5\right)=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=13\\x-3y=35\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{37}{2}\\y=\dfrac{-11}{2}\end{matrix}\right.\)

20 tháng 1 2019

Luân Đào, Hung nguyen, DƯƠNG PHAN KHÁNH DƯƠNG, Thierry Henry, Hạnh Hạnh, Nguyễn Việt Lâm, le thi hong van, Lân Trần Quốc, Unruly Kid, Khôi Bùi , Lê Nguyễn Ngọc Nhi, Ma Đức Minh, Mysterious Person, Akai Haruma, Lightning Farron, Ribi Nkok Ngok, ...

9 tháng 11 2018

\(\left\{{}\begin{matrix}x^3+y^3=^{ }1\left(1\right)\\x^5+y^5=x^2+y^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow x^5-x^2+y^5-y^2=0\)

\(\Leftrightarrow x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\)

\(\Leftrightarrow x^2\left(-y\right)^3+y^2\left(-x\right)^3=0\)

\(\Leftrightarrow x^2y^3+y^2x^3=0\)

\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\y=0\Rightarrow x=1\\x=-y\left(loại\right)\end{matrix}\right.\)

NV
11 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=5\\\left(x+y\right)^2-2xy+x+y=8\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\a^2+a-2b=8\end{matrix}\right.\) \(\Rightarrow a^2+a-2\left(5-a\right)=8\)

\(\Leftrightarrow a^2+3a-18=0\Rightarrow\left[{}\begin{matrix}a=3\Rightarrow b=2\\a=-6\Rightarrow b=11\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

3 tháng 12 2018

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{1}{xy}=6\end{matrix}\right.\left(x,y\ne0\right)\)\(\Leftrightarrow\left(I\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{1}{x}\cdot\dfrac{1}{y}=6\end{matrix}\right.\)

Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\left(a,b>0\right)\)

Hệ (I) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\ab=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b\left(5-b\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-\left(b^2-5b\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2-5b+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-3\right)\left(b-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=5-b\\b-3=0\end{matrix}\right.\\\left\{{}\begin{matrix}a=5-b\\b-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=5-b\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=5-b\\b=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

Trả lại biến cũ

\(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=2\\\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0,5\\y=\dfrac{1}{3}\end{matrix}\right.\left(TM\right)\)và ngược lại

Vậy HPT có các cặp nghiệm là \(\left(0,5;\dfrac{1}{3}\right);\left(\dfrac{1}{3};0,5\right)\)

P/S: Bạn kiểm tra kết quả lại giúp mình nhé

13 tháng 11 2018

Có nhầm đề không bạn ?

14 tháng 11 2018

\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)

20 tháng 11 2022

=>12/(x+y-1)-15/(2x-y+3)=15/2 và 12/(x+y-1)-4/(2x-y+3)=28/5

=>x+y-1=22/9; 2x-y+3=-110/19

=>x+y=31/9; 2x-y=-167/19

=>x=-914/513; y=2681/513

11 tháng 11 2018

hpt

24 tháng 12 2019

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)

The vao roi tinh la xong