\(\left\{{}\begin{matrix}x+3\sqrt{xy+x-y^2-y}=5y+4\\\sqrt{4y^2-x-2}+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

\(\left\{{}\begin{matrix}x+3\sqrt{xy+x-y^{2-y}}=5y+4\left(1\right)\\\sqrt{4y^2-x-2}+\sqrt{y-1}=x-1\left(2\right)\end{matrix}\right.\)

ĐK: x\(\ge1,y\ge1\),x\(\ge y\)

(1)\(\Leftrightarrow\left(x-y\right)+3\sqrt{x\left(y+1\right)-y\left(y+1\right)}-4y-4=0\Leftrightarrow\left(x-y\right)+3\sqrt{\left(x-y\right)\left(y+1\right)}-4\left(y+1\right)=0\left(3\right)\)

Chia 2 vế của (3) cho y+1>0 thì (3) và đặt t=\(\sqrt{\dfrac{x-y}{y+1}}\)(t\(\ge0\))

Vậy (3)\(\Leftrightarrow t^2+3t-4=0\Leftrightarrow t^2-t+4t-4=0\Leftrightarrow t\left(t-1\right)+4\left(t-4\right)=0\Leftrightarrow\left(t-1\right)\left(t+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t-1=0\\t+4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=-4\left(ktm\right)\end{matrix}\right.\)

Ta có t=1\(\Leftrightarrow\sqrt{\dfrac{x-y}{y+1}}=1\Leftrightarrow x-y=y+1\Leftrightarrow x=2y+1\)

Thay vào phương trình (2)\(\Leftrightarrow\sqrt{4y^2-\left(2y+1\right)-2}+\sqrt{y-1}=2y+1-1\Leftrightarrow\sqrt{4y^2-2y-3}+\sqrt{y-1}=2y\Leftrightarrow\left(\sqrt{4y^2-2y-3}-3\right)+\left(\sqrt{y-1}-1\right)=2\left(y-2\right)\Leftrightarrow\dfrac{4y^2-2y-12}{\sqrt{4y^2-2y-3}+3}+\dfrac{y-2}{\sqrt{y-1}+1}-2\left(y-2\right)=0\Leftrightarrow\dfrac{2\left(y-2\right)\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{y-2}{\sqrt{y-1}+1}-2\left(y-2\right)=0\Leftrightarrow\left(y-2\right)\left[\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{1}{\sqrt{y-1}+1}-2\right]=0\Leftrightarrow\)\(\left[{}\begin{matrix}y-2=0\left(4\right)\\\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}+\dfrac{1}{\sqrt{y-1}+1}-2=0\left(5\right)\end{matrix}\right.\)

(4)\(\Leftrightarrow y=2\Leftrightarrow x=5\left(tm\right)\)

(5)\(\Leftrightarrow\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}=2y+3-\sqrt{y+1}< 2y+3\Rightarrow\dfrac{2\left(2y+3\right)}{\sqrt{4y^2-2y-3}+3}\ge2\Leftrightarrow\)VT của (5)>2\(\Rightarrow\) vô nghiệm

Vậy (x;y)=(5;2)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
1 tháng 1 2019

Ai đó giúp em phần a, với ạ !!

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

20 tháng 6 2019

\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)

\(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

20 tháng 6 2019

\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)

Làm nốt nha