K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Bấm máy tính Casio fx-570 VN giải hệ phương trình 3 ẩn

Mode\(\rightarrow\) 5\(\rightarrow\) 2 :

Hệ số a b c d
PT 1 1 2 3 10
PT 2 2 3 1 13
PT 3 3 1 2 13

Ấn dấu = ta được a=3, b=2, c=1 (trên màn hình máy tính là x,y,z)

9 tháng 4 2017

2 Pt đầu khử a ,2 pt sau khử a ,ta được HPT 2 ẩn b,c

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

11 tháng 2 2017

Lấy (2)-(1) Và (2)-(1) nhân 2

hệ mới

\(\Leftrightarrow\left\{\begin{matrix}ax+ay=b-a\left(3\right)\\-bx+by=b-2a\left(4\right)\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}ax+ay=b-a\left(3\right)\\bx-by=2a-b\left(4\right)\end{matrix}\right.\)

Nếu a=0; b=0 nghiệm đúng với mọi x,y

Nếu a=0; b khác 0 => (3) hệ vô nghiệm

nếu b=0; a khác 0 => (4) hệ vô nghiệm

\(a,b\ne0\) hệ mới \(\left\{\begin{matrix}x+y=\frac{b-a}{a}\left(5\right)\\x-y=\frac{2a-b}{b}\left(6\right)\end{matrix}\right.\)

cộng và trừ cho nhau \(\left\{\begin{matrix}2x=\frac{b-a}{a}+\frac{2a-b}{b}\\2y=\frac{b-a}{a}-\frac{2a-b}{b}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=\frac{b^2+2a^2-2ab}{2ab}\\y=\frac{b^2-2a^2}{2ab}\end{matrix}\right.\)

Kết luận:

Với a hoặc b =0 hệ vô nghiệm

Với a và b=0 hệ vô số nghiệm " với mọi x,y"

Với a và b khác 0 hệ có nghiệm duy nhất:\(\left\{\begin{matrix}x=\frac{b^2+2a^2-2ab}{2ab}\\y=\frac{b^2-2a^2}{2ab}\end{matrix}\right.\)

27 tháng 9 2017

Ta có:

\(a+b=\dfrac{1}{6}\)

<=> \(a=\dfrac{1}{6}-b\) (*)

Thay (*) vào phương trình 2 ta có:

\(2\left(\dfrac{1}{6}-b\right)+2b=\dfrac{2}{5}\)

<=> \(\dfrac{1}{3}-2b+2b=\dfrac{2}{5}\)

<=> \(\dfrac{1}{3}=\dfrac{2}{5}\) ( vô lí)

Vậy hệ phương trình bậc nhất hai ẩn này vô nghiệm

3 tháng 4 2018

hệ\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\a+b=\dfrac{1}{5}\end{matrix}\right.\)(vô lí)

\(\Rightarrow\)hệ vô nghiệm

23 tháng 12 2019

Hello vị lài

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Bạn tham khảo tại link sau:

Câu hỏi của melchan123 - Toán lớp 9 | Học trực tuyến

NV
5 tháng 7 2020

Đặt \(\left\{{}\begin{matrix}a+b+c=p\Rightarrow p=2\\ab+bc+ca=q\\abc=r\end{matrix}\right.\) \(\Rightarrow0\le q\le\frac{1}{3}p^2=\frac{4}{3}\)

Ta cần chứng minh: \(q^2-2pr-2r\le1\Leftrightarrow q^2-6r\le1\)

TH1: \(0\le q< 1\Rightarrow q^2-6r\le q^2< 1\) \(\Rightarrow\) BĐT đúng

TH2: \(1\le q\le\frac{4}{3}\)

Theo Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{8\left(q-1\right)}{9}\Rightarrow q^2-6r\le q^2-\frac{16}{3}\left(q-1\right)\)

Do đó ta chỉ cần chứng minh: \(q^2-\frac{16}{3}\left(q-1\right)\le1\)

\(\Leftrightarrow3q^2-16q+13\le0\)

\(\Leftrightarrow\left(q-1\right)\left(3q-13\right)\le0\) (luôn đúng \(\forall x\in\left[1;\frac{4}{3}\right]\))

BĐT được chứng minh hoàn tất

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

6 tháng 7 2020

Ta chứng minh bất đẳng thức mạnh hơn: \(a^2b^2+b^2c^2+c^2a^2+\frac{11}{8}abc\le1\)

Thật vậy: \(VP-VT=\frac{1}{32}\sum\left(a-b\right)^2\left(a+b-c\right)^2+\frac{5}{16}\sum ab\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi $a=b=1,c=0$ và các hoán vị.

3 tháng 7 2021

\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)

\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)

\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)

Dấu "=" xảy ra khi a=2;b=3;c=4

Vậy \(P_{min}=33\)

26 tháng 2 2020

Áp dụng BĐT Cô - si ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\left(1\right)\)

Áp dụng BĐT trên ta được :
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)

Chứng minh tương tự rồi cộng các vế lại cho nhau ta được :
\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)

\(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)

Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)

Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)

Ta có BĐT phụ sau :
\(xy+yz+zx\le x^2+y^2+z^2\) ( tự chứng minh ) (2)

Áp dụng ta được :

\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)

Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}++\frac{1}{y}\right)^2\)( bình phương 2 vế lên )

Áp dụng BĐT này ta được :
\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Áp dụng BĐT (2) ta được :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)

\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)

Dấu " = " xảy ra khi a=b=c=1

Dài quá đi

Chúc bạn học tốt !!