Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+6y=\frac{x}{y}-\sqrt{x-2y}\)
\(\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
Đến đây ta có thể biểu diễn đại lượng \(\sqrt{x-2y}\)bởi các biểu thức đơn giản hơn bài toán đã gần như được hoàn thành. Thật vậy,
- Nếu \(\sqrt{x-2y}=-2y\)(*) thì từ pt thứ 2 ta có:
\(\sqrt{x-2y}=x+3y-2\Leftrightarrow-2y=x+3y-2\Leftrightarrow x=2-5y\)
Tiếp tục thay vào (*) ta có: \(\sqrt{2-7y}=-2y\)
Giải pt này kết hợp với điều kiện ta có nghiệm (x;y)=(12;-2)
- Nếu \(\sqrt{x-2y}=3y\)(**) thì từ pt hai ta có
\(\sqrt{x+3y}=x+3y-2\Leftrightarrow\left(\sqrt{x+3y}-2\right)\left(\sqrt{x+3y}+1\right)=0\)
\(\Leftrightarrow x+3y=4\). Thay vào (**) ta được \(\sqrt{4-5y}=3y\)
Tiến hành giải và so sanh điều kiện ta có nghiệm \(\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
Vậy hệ pt có 2 nghiệm (x;y)=(12;-2); \(\left(\frac{8}{3};\frac{4}{9}\right)\)
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}2y+6y^2=x-y\sqrt{x-2y}\\y\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)-y\sqrt{x-2y}-6y^2=0\\y\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\\y\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}t^2-t-6=0\\t=\frac{\sqrt{x-2y}}{y}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}t=\frac{\sqrt{x-2y}}{y}=3\\t=\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)
- Xét \(\sqrt{x-2y}=3y\left(x+3y\right)-\sqrt{x+3y}-2=0\)
\(\Leftrightarrow\hept{\begin{cases}t=\sqrt{x+3y}\left(t\ge0\right)\\t^2-t-2=0\end{cases}}\)\(\Leftrightarrow t=\sqrt{x+3y}=2\Rightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-3y\\\sqrt{4-5y}=3y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4-3y\\0< x\le\frac{4}{5}\\4-5y=9y^2\end{cases}}\Leftrightarrow\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
- Xét \(\sqrt{x-2y}=-2y\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-5y\\y< 0\\4y^2+7y-2=0\end{cases}}\Leftrightarrow\left(x;y\right)=\left(12;-2\right)\)
Vậy...
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
xem lại dấu ở PT thứ 2
ĐK : ...
\(\hept{\begin{cases}2+6y=\frac{x}{y}-\sqrt{x-2y}\left(1\right)\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\left(2\right)\end{cases}}\)
Ta có : ( 1 ) \(\Leftrightarrow2y+6y^2=x-y\sqrt{x-2y}\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{x-2y}}{y}\right)^2-\frac{\sqrt{x-2y}}{y}-6=0\Leftrightarrow\orbr{\begin{cases}\frac{\sqrt{x-2y}}{y}=3\\\frac{\sqrt{x-2y}}{y}=-2\end{cases}}\)
-Với \(\frac{\sqrt{x-2y}}{y}=3\Rightarrow\sqrt{x-2y}=3y\). Thay vào ( 2 ), ta có :
\(\sqrt{x+3y}=x+3y-2\Rightarrow\left(x+3y\right)-\sqrt{x+3y}-2=0\Rightarrow\orbr{\begin{cases}\sqrt{x+3y}=2\\\sqrt{x+3y}=-1\left(loai\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y=4\\\sqrt{x-2y}=3y\end{cases}}\Leftrightarrow....\)
-Với \(\frac{\sqrt{x-2y}}{y}=-2\Rightarrow\sqrt{x-2y}=-2y\Leftrightarrow\hept{\begin{cases}\sqrt{x-2y}=x+3y-2\\\sqrt{x-2y}=-2y\end{cases}\Leftrightarrow....}\)
Vậy ....