K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(S=7+7^3+7^5+7^7+....+7^{2017}\)

\(S=7+7^2\left(7+7^3\right)+7^6\left(7+7^3\right)+....+7^{2014}\left(7+7^3\right)\)

\(S=7+350\left(7^2+7^6+...+7^{2014}\right)\)

ta có \(350\left(7^2+7^6+...+7^{2014}\right)⋮35\)

mà 7 không chia hết cho 35

vậy S ko chia hết cho 35

11 tháng 11 2017

S= 7+73+...+72017

S= (7+73)+(75+77)+(79+711)+...+(72015+72017)

S=7.(1+49)+75.(1+49)+...+72015.(1+49)

S=(7.50)+(75.50)+...(72015.50)

S= 50.(7+72+75+...72015)

nên S chia hết cho 35

11 tháng 11 2017

\(S=7+7^3+7^5+7^7+7^8+......+7^{2015}+7^{2017}\)

\(\Leftrightarrow S=\left(7+7^3\right)+\left(7^5+7^7\right)+\left(7^9+7^{11}\right)......+\left(7^{2015}+7^{2017}\right)\)

\(\Leftrightarrow S=\left(7+7^3\right)+7^4\left(7+7^3\right)+7^8\left(7+7^3\right)+......+7^{2014}\left(7+7^3\right)\)

\(\Leftrightarrow S=350+7^4.350+7^8.350+......+7^{2014}.350\)

\(\Leftrightarrow S=350\left(1+7^4+7^8+......+7^{2014}\right)\)

\(\Leftrightarrow S=35.10\left(1+7^4+7^8+......+7^{2014}\right)⋮35\left(dpcm\right)\)

11 tháng 11 2017

\(S=7+7^3+7^5+7^7+7^8+......+7^{2015}+7^{2017}\)

\(\Leftrightarrow S=\left(7+7^3\right)+\left(7^5+7^7\right)+\left(7^9+7^{11}\right)......+\left(7^{2015}+7^{2017}\right)\)

\(\Leftrightarrow S=\left(7+7^3\right)+7^4\left(7+7^3\right)+7^8\left(7+7^3\right)+......+7^{2014}\left(7+7^3\right)\)

\(\Leftrightarrow S=350+7^4.350+7^8.350+......+7^{2014}.350\)

\(\Leftrightarrow S=350\left(1+7^4+7^8+......+7^{2014}\right)\)

\(\Leftrightarrow S=35.10\left(1+7^4+7^8+......+7^{2014}\right)⋮35\left(dpcm\right)\)

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

13 tháng 3 2019

cs chép sai đè ko vậy

14 tháng 3 2019

không

27 tháng 11 2016

Ta có :

(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)

(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)

\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)

<=> A chia hết cho 5 (2)

Mà (5;7)=1 (3)

Từ (1) ; (2) và 3

=> A chia hết cho 5.7 = 35

3 tháng 7 2018

a, \(S=7+7^3+...+7^{1999}\)

=>\(7^2S=7^3+7^5+...+7^{2001}\)

=>\(49S-S=\left(7^3+7^5+...+7^{2001}\right)-\left(7+7^3+...+7^{1999}\right)\)

=>\(48S=7^{2001}-7\)

=>\(S=\frac{7^{2001}-7}{48}\)

b, đề thiếu

3 tháng 7 2018

Thiếu hả bn đề này cô giáo mk cho đó

4 tháng 7 2018

Bài tập này bạn lên mạng tìm kiếm có thể có chứ giải thì dái lắm

Cố gắng nha

4 tháng 7 2018

Giúp thì giúp đi mày