Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E
Bạn tự vẽ hình nhé!
+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)
- Nối O với F. Kẻ OH | BF.
Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2
Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)
=> góc ABF = góc BOF/2 (*)
- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2
Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc FOC/ 2
=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2
=> góc BDF = góc BOF/2 (**)
Từ (*)(**) => góc ABF = BDF mà góc FAB chung
=> Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2
+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung
=> Tam giác AFI đồng dạng với tam giác AOD (c - g- c)
=> góc AIF = ADO ( 2 góc tương ứng)