K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

undefined

17 tháng 8 2020

là sao ạ

NV
22 tháng 8 2020

Áp dụng hằng đẳng thức \(\left(a+b\right)^2\) với \(a=x+y\)\(b=z\)

Đã cẩn thận khoanh ngoặc cho bạn nhìn đỡ phải hỏi rồi mà vẫn đi hỏi :D

\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

11 tháng 2 2022

Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha

6 tháng 11 2021

\(x^2-3x+xy-3x\)

\(=x^2+xy-6x\)

\(=x.\left(x+y-6\right)\)

25 tháng 8 2021

\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)

\(\Leftrightarrow3x^2-6x+3+9x-21=0\)

\(\Leftrightarrow3x^2+3x-18=0\)

\(\Leftrightarrow3\left(x^2+x-6\right)=0\)

\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy \(S=\left\{2;-3\right\}\)

17 tháng 1 2023

11)

\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^{2^{ }}-4}{4}\) - \(\dfrac{x}{2}\) 

\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^2-2^2}{4}\) - \(\dfrac{x}{2}\) 

\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{\left(x-2\right)\left(x+2\right)}{4}\) - \(\dfrac{x}{2}\) 

\(\dfrac{x\left(x-3\right)}{2}\)

\(\dfrac{x^2+x+1}{x^2-x+1}-\dfrac{1}{3}=\dfrac{3x^2+3x+3-x^2+x-1}{3\left(x^2-x+1\right)}\)

\(=\dfrac{2x^2+4x+2}{3\left(x^2-x+1\right)}=\dfrac{2\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge0\)

Do đó: \(\dfrac{1}{3}\le\dfrac{x^2+x+1}{x^2-x+1}\)(1)

\(\dfrac{x^2+x+1}{x^2-x+1}-3=\dfrac{x^2+x+1-3x^2+3x-3}{x^2-x+1}\)

\(=\dfrac{-2x^2+4x-2}{x^2-x+1}=\dfrac{-2\left(x-1\right)^2}{x^2-x+1}\le0\)

Do đó: \(\dfrac{x^2+x+1}{x^2-x+1}\le3\)(2)

Từ (1)và (2) suy ra ĐPCM