K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

ĐK: \(x\ge0\)

Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)

Khi đó bất phương trình tương đương:

\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)

\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)

\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)

19 tháng 3 2021

Nguyễn Ngọc Hôm trước có câu tương tự mà nhỉ.

16 tháng 10 2017

k có điều kiện à :> đắng thật

16 tháng 10 2017

@@ tại đang tìm hiểu về phương pháp hệ số bất định đến đoạn đó ko hiểu tính a b c d kiểu gì !!! Đây là hình của bài hoàn chỉnh ạ !! Với lại cái chỗ khoanh đỏ là cái em đang không biết !!! Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
23 tháng 1 2024

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

10 tháng 7 2016

Toán lớp 9 ư??? oho nhìu quá 

10 tháng 7 2016

ôn thi ĐH á bạn :))

28 tháng 8 2021

Mình trình bày cho dễ hiểu nha

\(sina-\sqrt{3}cosa\)   

\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)

\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)

\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)

Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)   

\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)   

Vậy Min=-2

Max=2

28 tháng 8 2021
Ăn đâu BUI đi 💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩
8 tháng 8 2016

ai đó giải giúp minh với khó quá à

 

14 tháng 10 2017

Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)

Thay 1 vào x, ta có

f(x) =14+12+a=0

2+a=0 suy ra a=-2

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)