Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt x2 + x + 1 = t > 0 (dễ c/m t > 0 rồi ha)
Khi đó, pt tương đương: \(t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\left(L\right)\end{matrix}\right.\)
t = 3 suy ra \(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
c) Chị xem lại đề giúp em ạ.
Tatsuya Yuuki( Team Megin Kawakuchi)
người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào
a, \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\left(ĐKXĐ:x\ne\pm2;\pm5\right)\)
\(\frac{x+9}{\left(x-5\right)\left(x+2\right)}-\frac{x+15}{\left(x+5\right)\left(x-5\right)}=\frac{1}{x+2}\)
\(\frac{\left(x+9\right)\left(x+5\right)}{\left(x-5\right)\left(x+2\right)\left(x+5\right)}-\frac{\left(x+15\right)\left(x+2\right)}{\left(x+5\right)\left(x-5\right)\left(x+2\right)}=\frac{\left(x+5\right)\left(x-5\right)}{\left(x+2\right)\left(x+5\right)\left(x-5\right)}\)
Khử mẫu : \(\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)=\left(x+5\right)\left(x-5\right)\)
\(x^2+14x+45-x^2-17x-30=x^2-25\)
\(-3x+15-x^2+25=0\)
\(-3x-x^2+40=0\)( giải delta ta đc )
\(x_1=-5;x_2=8\)
b, \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1ĐKXĐ\left(x\ne1;\frac{1}{3}\right)\)
\(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=1\)
\(\frac{x-1}{\left(3x-1\right)\left(x-1\right)}+\frac{\left(2x+2\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(3x-1\right)\left(x-1\right)}=\frac{\left(3x-1\right)\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}\)
Khửi mẫu \(x-1+\left(2x+2\right)\left(3x-1\right)-3x^2-1=\left(3x-1\right)\left(x-1\right)\)( bn tự nốt nhé)
c, \(\left(x+3\right)^2-10\ge\left(x+3\right)\left(x+2\right)-4\)
\(x^2+6x+9-10\ge x^2+5x+6-4\)
\(x-3\ge0\Leftrightarrow x\ge3\)
a) \(\frac{x+9}{x^2-3x-10}-\frac{x+15}{x^2-25}=\frac{1}{x+2}\); ĐKXĐ: x # -2; x # +-5
<=> \(\frac{x+9}{\left(x+2\right)\left(x-5\right)}-\frac{x+15}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+2}\)
<=> \(\frac{\left(x+9\right)\left(x+5\right)-\left(x+15\right)\left(x+2\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)\left(x+5\right)}{\left(x+2\right)\left(x-5\right)\left(x+5\right)}\)
<=> (x + 9)(x + 5) - (x + 15)(x + 2) = (x - 5)(x + 5)
<=> -3x + 15 = x^2 - 25
<=> -3x + 15 - x^2 + 25 = 0
<=> -3x + 40 - x^2 = 0
<=> x^2 + 3x - 40 = 0
<=> (x - 5)(x + 8) = 0
<=> x - 5 = 0 hoặc x + 8 = 0
<=> x = 5 (ktm0 hoặc x = -8 (tm)
b) \(\frac{1}{3x-1}+\frac{2x+2}{x-1}-\frac{3x^2+1}{3x^2-4x+1}=1\); ĐKXĐ: x # 1/3; x # 1
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{x\left(3x-1\right)-\left(3x-1\right)}=1\)
<=> \(\frac{1}{3x-1}+\frac{2\left(x+1\right)}{x-1}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=1\)
<=> \(\frac{x-1}{\left(x-1\right)\left(3x-1\right)}+\frac{2\left(x+1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}-\frac{3x^2+1}{\left(x-1\right)\left(3x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(3x-1\right)}\)
<=> x - 1 + 2(x + 1)(3x - 1) - 3x^2 + 1 = (x - 1)(3x - 1)
<=> 5x - 4 + 3x^2 = 3x^2 - 4x + 1
<=> 5x - 4 = -4x + 1
<=> 5x + 4x = 1 + 4
<=> 9x = 5
<=> x = 5/9 (tm)
c) (x + 3)^2 - 10 >= (x + 3)(x + 2) - 4
<=> x^2 + 3x + 3x + 9 - 10 >= x^2 + 2x + 3x + 6 - 4
<=> x^2 + 6x + 9 - 10 >= x^2 + 5x + 6 - 4
<=> x^2 + 6x - 1 >= x^2 + 5x + 2
<=> x^2 + 6x - 1 - x^2 - 5x - 2 >= 0
<=> x - 3 >= 0
<=> x >= 3
a/ (x+5)(3x+2)^2=x^2(x+5)
(x+5)(9x^2+12x+4)=x^2(x+5)
9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2
9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20
8x^3+52x^2+64x+20=0
........................
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Mình làm lại rồi nhé!
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 3.
đặt P(x)=x^4+3x^3+4x^2+3x+1
đặt y=x2+1
=>y2=(x2+1)2
=>y2=x4+2x2+1
=>P(x)=x4+2x2+1+3x3+2x2+3x
=x4+2x2+1+3x3+3x+2x2
=x4+2x2+1+3x(x2+1)+2x2
=y2+3xy+2x2
=y2+xy+2xy+2x2
=y(y+x)+2x(y+x)
=(y+x)(y+2x)
thay y=x2+1 ta được:
P(x)=(x2+1+x)(x2+1+2x)
=>x^4+3x^3+4x^2+3x+1=0
<=>(x2+1+x)(x2+1+2x)=0
<=>x2+1+x=0 hoặc x2+1+2x=0
mà x2\(\ge\)|x|
nên x2+x\(\ge\)0
=>x2+1+x>0
nên x2+1+2x=0
<=>(x+1)2=0
<=>x+1=0
<=>x=-1
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)