K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)

\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)

\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)

\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)

mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)

=> 2x + 7 = 0 => x = -7/2 

                                                                              Vậy x = -7/2

19 tháng 7 2017

các bạn giúp mình với. cảm ơn 

19 tháng 7 2017

giúp mình với

18 tháng 2 2021

a) ĐKXĐ : \(x\ne-2;x\ne5\)

\(\frac{7}{x+2}=\frac{3}{x-5}\)

<=> 3(x + 2) = 7(x - 5)

<=> 3x + 6 = 7x - 35

<=> 4x = 41

<=>x = 41/4 (tm)

Vậy x = 41/4 là ngiệm phương trình

b) ĐKXĐ \(x\ne\pm3\)

\(\frac{2x-1}{x+3}=\frac{2x}{x-3}\)

<=> \(\frac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

<=> (2x - 1)(x - 3) = 2x(x + 3)

<=> 2x2 - 7x + 3 = 2x2 + 6x

<=> 13x = 3

<=> x = 3/13 (tm)

Vậy x = 3/13 là nghiệm phương trình

c) ĐKXĐ : \(x\ne-7;x\ne1,5\)

Khi đó \(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

<=> \(\frac{\left(3x-2\right)\left(2x-3\right)}{\left(x+7\right)\left(2x-3\right)}=\frac{\left(6x+1\right)\left(x+7\right)}{\left(x+7\right)\left(2x-3\right)}\)

<=> (3x - 2)(2x - 3) = (6x + 1)(x + 7)

<=> 6x2 - 13x + 6 = 6x2 + 43x + 7

<=> 56x = -1

<=> x = -1/56 (tm) 

Vậy x = -1/56 là nghiệm phương trình

d) ĐKXĐ : \(x\ne\pm1\)

Khi đó \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

<=> \(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

<=> (2x + 1)(x + 1) = 5(x - 1)2

<=> 2x2 + 3x + 1 = 5x2 - 10x + 5

<=> 3x2 - 13x + 4 = 0

<=> 3x2 - 12x - x + 4 = 0

<=> 3x(x - 4) - (x - 4) = 0

<=> (3x - 1)(x - 4) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy x \(\in\left\{\frac{1}{3};4\right\}\)là nghiệm phương trình

18 tháng 2 2021

e) ĐKXĐ : \(x\ne1\)

Khi đó \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)

<=> \(\frac{3x-5}{x-1}=2\)

<=> 3x - 5 = 2(x - 1) 

<=> 3x - 5 = 2x - 2

<=> x = 3 (tm) 

Vậy x = 3 là nghiệm phương trình

f) ĐKXĐ : \(x\ne-1\)

 \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> \(\frac{3x+2}{x+1}=3\)

<=> 3x + 2 = 3(x + 1)

<=> 3x + 2 = 3x + 3

<=> 0x = 1

<=> \(x\in\varnothing\)

Vậy tập nghiệm phương trình S = \(\varnothing\)

g) ĐKXĐ : \(x\ne2\)

Khi đó \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

<=>\(\frac{x-2}{x-2}=3\)

<=> (x - 2) = 3(x - 2)

<=> x - 2 = 3x - 6

<=> -2x = -4

<=> x = 2 (loại) 

Vậy tập nghiệm phương trình S = \(\varnothing\)

h) ĐKXĐ : \(x\ne7\)

Khi đó \(\frac{1}{7-x}=\frac{x-8}{x-7}-8\)

<=> \(\frac{x-7}{x-7}=8\)

<=> x - 7 = 8(x - 7)

<=> x - 7 = 8x - 56

<=> 7x = 49

<=> x = 7 (loại)

Vậy tập nghiệm phương trình S = \(\varnothing\)

i) ĐKXĐ : \(x\ne0;x\ne6\)

Ta có : \(\frac{x+6}{x}=\frac{1}{2}+\frac{15}{2\left(x-6\right)}\)

<=> \(\frac{x+6}{x}-\frac{15}{2\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2\left(x+6\right)\left(x-6\right)}{2x\left(x-6\right)}-\frac{15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2x^2-72-15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> 4x2 - 144 - 30x = 2x(x - 6) 

<=> 2x2 - 18x - 144 = 0

<=> x2 - 9x - 72 = 0

<=> x2 - 9x + 81/4 - 72- 81/4 = 0

<=> \(\left(x-\frac{9}{2}\right)^2-\frac{369}{4}=0\)

<=> \(\left(x-\frac{9}{2}+\sqrt{\frac{369}{4}}\right)\left(x-\frac{9}{2}-\sqrt{\frac{369}{4}}\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{9}{2}-\sqrt{\frac{369}{4}}\\x=\frac{9}{2}+\sqrt{\frac{369}{4}}\end{cases}}\)(tm)

Vậy x \(\in\left\{\frac{9}{2}-\sqrt{\frac{369}{4}};\frac{9}{2}+\sqrt{\frac{369}{4}}\right\}\)

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

3 tháng 1 2021

a) 3x - 2(5 + 2x) =45 - 2x

=> 3x - 10 - 4x = 45 - 2x

=> 3x - 4x + 2x = 45 + 10

=> x = 55

b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)

=> 5(2x + 17) = 3(x - 3)

=> 10x + 85 = 3x - 9

=> 7x = -94

=> x = -94/7

c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)

=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)

=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)

=> (-11x - 3).7 = (4x - 33).12

= -77x - 21 = 48x - 396

=> x = 3

d) (x - 1)(5x + 3) = (3x - 8)(x - 1)

=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0

=> (x - 1)(2x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\) 

e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0

=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0

=> (x - 1)(4x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)

f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\) 

=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))

=> x = 50

3 tháng 1 2021

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)

\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)

f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)

\(\Leftrightarrow x=-66\)