K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)

\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)

Với \(sinx-cosx=0\)

\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)

Với \(\frac{3}{2}sin2x+2+cos2x=0\)

\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)

29 tháng 7 2020

\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)

Nhận thấy sinx=0 không là nghiệm pt.

Chia cả 2 vế cho sin4x ta được

\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)

d) kiểm tra đề.

NV
31 tháng 7 2020

d/

\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)

\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)

\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

24 tháng 9 2019
https://i.imgur.com/yhrE4YZ.jpg
NV
18 tháng 8 2020

d/

\(\Leftrightarrow2cos^3x+2sinx-6sin^2x.cosx=0\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(2+2tanx.\frac{1}{cos^2x}-6tan^2x=0\)

\(\Leftrightarrow1+tanx\left(1+tan^2x\right)-3tan^2x=0\)

\(\Leftrightarrow tan^3x-3tan^2x+tanx+1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x-2tanx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x-2tanx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=1-\sqrt{2}\\tanx=1+\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

NV
18 tháng 8 2020

c/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(4+2tan^3x-3tanx.\frac{1}{cos^2x}=0\)

\(\Leftrightarrow2tan^3x-3tanx\left(1+tan^2x\right)+4=0\)

\(\Leftrightarrow-tan^3x-3tanx+4=0\)

\(\Leftrightarrow\left(1-tanx\right)\left(tan^2x+tanx+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x+tanx+4=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

NV
18 tháng 8 2020

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)

\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)

\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(2tan^2x+3+4tanx-1-tan^2x=0\)

\(\Leftrightarrow tan^2x+4tanx+2=0\)

\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)

\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)

NV
18 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)

Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

4 tháng 10 2020

mik lm biếng quá mik chỉ nói cách làm thôi nha bạn

1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)

đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))

2) cx làm cách tương tự chia 2 vế cho cos^2x

3) giữ vế trái bung vế phải ra

\(sin2x-2sin^2x=2-4sin^22x\)

đặt t = sin2x (-1=<t=<1)

4) đẩy sinx cosx qua trái hết

\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)

\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)

\(-cos\left(sinxcosx+cos^2x+1\right)=0\)

cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))

5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]

khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2

làm đi là ra à

NV
18 tháng 8 2020

b/ ĐKXĐ: \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

\(6sinx-2cos^3x=\frac{10sin2x.cos2x.sinx}{2cos2x}\)

\(\Leftrightarrow6sinx-2cos^3x=5sin2x.sinx\)

\(\Leftrightarrow3sinx-cos^3x=5cosx.sin^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(3tanx\left(1+tan^2x\right)-1=5tan^2x\)

\(\Leftrightarrow3tan^3x-5tan^2x+3tanx-1=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x-2tanx+1\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\) (ko thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

NV
18 tháng 8 2020

d/

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)

\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)

\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)

\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)