K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

a)A<=>\(\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}\)=0(đk -2<=x)

<=>\(\sqrt{x+2}\left(1+\sqrt{x+2}\right)\)=0

vì 1+\(\sqrt{x+2}\) >=1 nên để A=0 thì \(\sqrt{x+2}\)=0

=>x+2=0

=>x=-2

26 tháng 10 2017

b)B<=>\(\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{x+1}\)=0(đk -1<=x<=1

<=>\(\sqrt{x+1}\left(\sqrt{1-x}+1\right)\)=0

\(\sqrt{1-x}+1\)\(>=\)1 nên để B=0 thì \(\sqrt{x+1}=0\)

<=> x+1=0

=>x=-1

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

2 tháng 7 2018

a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow|x-3|=\sqrt{5}-1\)

Làm nốt

b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)

Làm nốt

c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)

Làm nốt

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

3 tháng 8 2018

a) Đk: \(\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow x^2-1-\sqrt{x^2-1}= 0\)

\(\Leftrightarrow\left(\sqrt{x^2-1}-1\right)\sqrt{x^2-1}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}-1=0\\\sqrt{x^2-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=1\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\left(1\right)\\x^2=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\sqrt{2}\left(N\right)\)

\(\left(2\right)\Leftrightarrow x=\pm1\left(N\right)\)

Kl: \(x=\pm\sqrt{2}\), \(x=\pm1\)

b) Đk: \(\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4=x^2-4x+4\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=8\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(N\right)\\x\ge2\end{matrix}\right.\)

kl: x=2

c) \(\sqrt{x^4-8x^2+16}=2-x\)

\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)

\(\Leftrightarrow\left|x^2-4\right|=2-x\) (*)

Th1: \(x^2-4< 0\Leftrightarrow-2< x< 2\)

(*) \(\Leftrightarrow x^2-4=x-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=-1\left(N\right)\end{matrix}\right.\)

Th2: \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

(*)\(\Leftrightarrow x^2-4=2-x\Leftrightarrow x^2+x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-3\left(N\right)\end{matrix}\right.\)

Kl: x=-3, x=-1,x=2

d) \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(\Leftrightarrow\left|3x+1\right|=3-\sqrt{2}\) (*)

Th1: \(3x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=3-\sqrt{2}\Leftrightarrow x=\dfrac{2-\sqrt{2}}{3}\left(N\right)\)

Th2: \(3x+1< 0\Leftrightarrow x< -\dfrac{1}{3}\)

(*) \(\Leftrightarrow3x+1=-3+\sqrt{2}\Leftrightarrow x=\dfrac{-4+\sqrt{2}}{3}\left(N\right)\)

Kl: \(x=\dfrac{2-\sqrt{2}}{3}\), \(x=\dfrac{-4+\sqrt{2}}{3}\)

e) Đk: \(x\ge-\dfrac{3}{2}\)

\(\sqrt{4^2-9}=2\sqrt{2x+3}\) \(\Leftrightarrow\sqrt{7}=2\sqrt{2x+3}\) \(\Leftrightarrow7=8x+12\)

\(\Leftrightarrow8x=-5\Leftrightarrow x=-\dfrac{5}{8}\left(N\right)\)

kl: \(x=-\dfrac{5}{8}\)

f) Đk: x >/ 5

\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\left(N\right)\)

kl: x=9

16 tháng 1 2019

Dài dữ

8 tháng 10 2021

loading...loading...

 

 

9 tháng 10 2021

a)\(\sqrt{4x+20}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{9x-45}\)=4  ; ĐKXĐ : x ≥_+ 5

⇔ \(\sqrt{2^2x+2^2.5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)\(\sqrt{3^2x-3^2.5}\) =4

⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\dfrac{1}{3}\)3\(\sqrt{x-5}\) =4 ⇔ 2\(\sqrt{x+5}\) +\(\sqrt{x-5}\) -\(\sqrt{x-5}\) =4⇔2\(\sqrt{x+5}\)=4(tm)

\(\sqrt{x+5}\)=2⇔x+5=4 ⇔x=-1

                                          Vậy x=-1

b) \(\sqrt{x^2-36}\) - \(\sqrt{x-6}\) =0 ; ĐKXĐ: x≥_+6

⇔ \(\sqrt{\left(x-6\right)\left(x+6\right)}\) - \(\sqrt{x-6}\)  =0 ⇔ \(\sqrt{x-6}\).\(\sqrt{x+6}\) - \(\sqrt{x-6}\) =0

⇔ \(\sqrt{x-6}\)(\(\sqrt{x+6}\) -1 )=0 ⇔\([\) \(\begin{matrix}\sqrt{x-6}&=0\\\sqrt{x+6}-1&=0\end{matrix}\) ⇔ \([\) \(\begin{matrix}x-6&=0\\x+6-1&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=6\left(ktm\right)\\x&=-5\left(tm\right)\end{matrix}\)

                                             Vậy x=-5

c) \(\sqrt{4-x^2}\) -x +2 =0 ; ĐKXĐ: -2≤x≤2

⇔ \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -x+2 =0  ⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) -(x-2)=0

⇔  \(\sqrt{\left(2-x\right)\left(2+x\right)}\) =(x-2) ⇔ (2-x)(2+x)=(x-2)2 ⇔ 4-x2 = x2-4x+4 ⇔ -x2-x2+4x=4-4

        ⇔-2x2+4x=0 ⇔ -2x(x-2)=0 ⇔ \([\) \(\begin{matrix}-2x&=0\\x-2&=0\end{matrix}\) ⇔\([\) \(\begin{matrix}x&=0\left(tm\right)\\x&=2\left(tm\right)\end{matrix}\)

                                          Vậy S=\(\left\{0;2\right\}\)

d) \(\sqrt{\left(2x-3\right)\left(x-1\right)}-\sqrt{x-1}=0\) ; ĐKXĐ: x≥\(\dfrac{3}{2}\);x ≥ 1

\(\sqrt{2x-3}.\sqrt{x-1}-\sqrt{x-1}=0\) ⇔ \(\sqrt{x-1}.\left(\sqrt{2x-3}-1\right)=0\) 

⇔ \(\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-3}-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x-1=0\\2x-3-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

             Vậy s=\(\left\{1:2\right\}\)

 
 

                                                                    

 
 
 
 

 

 

23 tháng 7 2019

a) \(\sqrt{x^2-6x+9}+x=11\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)

\(\Rightarrow x-3+x=11\) 

\(\Rightarrow2x=14\Rightarrow x=7\) 

Vậy........

b) \(\sqrt{3x^2-4x+3}=1-2x\)

\(3x^2-4x+3=1-4x+4x^2\) 

\(3x^2-4x^2-4x+4x=-2\) 

\(-x^2=-2\) 

\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\) 

Vậy.........

23 tháng 7 2019

d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\) 

\(\Rightarrow2x-1=x-3\) 

\(\Rightarrow x=1-3\) 

\(\Rightarrow x=-2\) 

Vậy  x=-2

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

19 tháng 8 2020

c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)

\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)

\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)

\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)

d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)

\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)

\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)

\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)