K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2020

2/

\(\Leftrightarrow1+\left(sin2x+cos2x\right)^3-3sin2x.cos2x\left(sin2x+cos2x\right)=3sin2x.cos2x\)

Đặt \(sin2x+cos2x=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(t^2=1+2sin2x.cos2x\Rightarrow sin2x.cos2x=\frac{t^2-1}{2}\)

Pt trở thành:

\(1+t^3-\frac{3}{2}\left(t^2-1\right).t=\frac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=-1+\sqrt{6}\left(l\right)\\t=-1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sin2x+cos2x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

NV
27 tháng 7 2020

1/

ĐKXĐ: ...

\(\Leftrightarrow cosx+sinx=2sinx.cosx+1\)

\(\Leftrightarrow sinx+cosx=2sinx.cosx+sin^2x+cos^2x\)

\(\Leftrightarrow sinx+cosx=\left(sinx+cosx\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}sinx+cosx=0\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k2\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)

11 tháng 9 2016

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

NV
13 tháng 7 2020

10. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(2cos2x+tanx=\frac{4}{5}\)

\(\Leftrightarrow4cos^2x-2+tanx=\frac{4}{5}\)

\(\Leftrightarrow\frac{4}{1+tan^2x}+tanx-\frac{14}{5}=0\)

Đặt \(tanx=t\)

\(\Rightarrow\frac{20}{1+t^2}+5t-14=0\)

\(\Leftrightarrow5t^3-14t^2+5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(5t^2-4t-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{2+\sqrt{19}}{5}\\t=\frac{2-\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2=tana\\tanx=\frac{2+\sqrt{19}}{5}=tanb\\tanx=\frac{2-\sqrt{19}}{5}=tanc\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=a+k\pi\\x=b+k\pi\\x=c+k\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

9.

\(\Leftrightarrow cos2x-3cosx=2\left(cosx+1\right)\)

\(\Leftrightarrow2cos^2x-1-3cosx=2cosx+2\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=3\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

NV
1 tháng 10 2020

a.

\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)

\(tan3x-tanx=0\)

\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)

\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow2sinx.cosx=0\)

\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)

NV
1 tháng 10 2020

c.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)

\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

d.

\(\Leftrightarrow cos^2\left(2x-1\right)=0\)

\(\Leftrightarrow cos\left(2x-1\right)=0\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)

12 tháng 10 2020

@Nguyễn Việt Lâm giúp em với ạ

13 tháng 10 2020

@Nguyễn Việt Lâm

NV
9 tháng 10 2020

4.

\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
9 tháng 10 2020

2.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)

3.

\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)

\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

14 tháng 12 2019

\(\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x+2\cos^2x-1\right)-\sin2x-\cos x=0\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x+2\cos^2x-1-2\cos^2x+1-\cos x\right)=0\Leftrightarrow\left(2\sin x+1\right)\left(\sqrt{3}\sin x-\cos x\right)=0\Rightarrow\left[{}\begin{matrix}2\sin x+1=0\\\sqrt{3}\sin x-\cos x=0\end{matrix}\right.\)

NV
25 tháng 8 2020

7.

\(\Leftrightarrow\left[{}\begin{matrix}2x-40^0=60^0+k360^0\\2x-40^0=120^0+n360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=50^0+k180^0\\x=80^0+n180^0\end{matrix}\right.\)

Do \(-180^0\le x\le180^0\Rightarrow\left\{{}\begin{matrix}-180^0\le50^0+k180^0\le180^0\\-180^0\le80^0+n180^0\le180^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\frac{23}{18}\le k\le\frac{13}{18}\\-\frac{13}{9}\le n\le\frac{5}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-1;0\right\}\\n=\left\{-1;0\right\}\end{matrix}\right.\)

\(\Rightarrow x=\left\{-130^0;50^0;-100^0;80^0\right\}\)

8.

\(\Leftrightarrow sinx=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

NV
25 tháng 8 2020

5.

\(\Leftrightarrow\frac{\sqrt{2}}{2}sin2x+\frac{\sqrt{2}}{2}cos2x=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin2x.sin\frac{\pi}{4}+cos2x.cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

6.

\(\Leftrightarrow2sin2x=-1\)

\(\Leftrightarrow sin2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
19 tháng 8 2020

Đặt \(x+\frac{\pi}{4}=t\Rightarrow x=t-\frac{\pi}{4}\)

Pt trở thành:

\(sin^3t=\sqrt{2}sin\left(t-\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin^3t=sint-cost\)

\(\Leftrightarrow sint-sin^3t-cost=0\)

\(\Leftrightarrow sint\left(1-sin^2t\right)-cost=0\)

\(\Leftrightarrow sint.cos^2t-cost=0\)

\(\Leftrightarrow cost\left(sint.cost-1\right)=0\)

\(\Leftrightarrow cost\left(\frac{1}{2}sin2t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=2>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cos\left(x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

NV
19 tháng 8 2020

c/

ĐKXĐ: ...

Chia 2 vế cho \(cos^2x\) ta được:

\(\left(1+tanx\right)tan^2x=3tanx\left(1-tanx\right)+3\left(1+tan^2x\right)\)

\(\Leftrightarrow tan^3x+tan^2x=3tanx-3tan^2x+3+3tan^2x\)

\(\Leftrightarrow tan^3x+tan^2x-3tanx-3=0\)

\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)