K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

⇔ ( x + 2 )( x - 1 ) = 0 ⇔ Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy phương trình có tập nghiệm là S = { - 2;1 }.

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

16 tháng 5 2019

(x^2+x)^2+4(x^2+x)=12 
<=>x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0 
<=>x^4 + 2x^3 + 5x^2 + 10x - 6x - 12 = 0 
<=>x^3(x+2) + 5x(x+2)-6(x+2) = 0 
<=>(x+2)(x^3 + 5x - 6) = 0 
<=>(x+2)(x^3 - x+ 6x - 6) =0 
<=>(x+2)[(x-1)(x^2+x+1) + 6(x-1)] = 0 
<=>(x+2)(x-1)(x^2+x+7) = 0 
Ta có: x^2+x+7 >=0 
<=>
​[ x+2 = 0 <=> x = -2     
[x - 1 = 0 <=> x = 1 
Vậy pt có 2 ng x=1, x=-2

17 tháng 5 2019

Đặt ẩn phụ là xong á?

Đặt \(x^2+x=t\).Phương trình trở thành:

\(t^2+4t-12=0\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow t\left(t-2\right)+6\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x+6=0\left(2\right)\end{cases}}\)

Giải (1) được hai nghiệm: x = 1; x = -2

Giải (2) ta có: \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\forall x\)

Nên (2) vô nghiệm.

Vậy phương trình có 2 nghiệm x = 1; x = -2

20 tháng 1 2021

a) \(2x-10=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là: S = {5}

b) \(3,4-x=-4\)

\(\Leftrightarrow x=7,4\)

Vậy tập nghiệm của phương trình là: S = {7,4}

c) \(x-\frac{4}{5}=\frac{1}{5}\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là: S = {1}

d) \(2\left(x-3\right)-3x+5=0\)

\(\Leftrightarrow2x-6-3x+5=0\)

\(\Leftrightarrow-x-1=0\)

\(\Leftrightarrow x=-1\)

Vậy tập nghiệm của phương trình là: S = {-1}

21 tháng 1 2021

a, \(2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = {5}

b, \(3,4-x=-4\Leftrightarrow x=7,4\)kết luận tương tự như trên và các phần còn lại 

c, \(\frac{x-4}{5}=\frac{1}{5}\)Khử mẫu : \(x-4=1\Leftrightarrow x=5\)

d, \(x+12=2-x\Leftrightarrow2x=-10\Leftrightarrow x=-5\)

e, \(2\left(x-3\right)-3x+5=0\Leftrightarrow2x-6-3x+5=0\)

\(\Leftrightarrow-x-1=0\Leftrightarrow x=-1\)

22 tháng 3 2023

1. 4x-12=0

<=>4x=12

<=>x=3

2.  x.(x+1)-(x+2)(x+3)=7

<=>x2+x-x2-3x-2x-6=7

<=>x2-x2+x-2x-3x=7+6

<=>-4x=13

<=>x=\(-\dfrac{13}{4}\)

3.   7+2x=22-3x

<=>2x+3x=22-7

<=>5x=15

<=>x=3

4.  (x-1)-(2x-1)=9-x

<=>x-1-2x+1=9-x

<=>x-2x+x=9+1-1

<=>0x=9

vô nghiệm

14 tháng 2 2023

`a,(2x-5)(12+5x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{12}{5}\end{matrix}\right.\)

`b, (x-3)(x-4)-2(x-3)=0`

`<=>(x-3)(x-4-2)=0`

`<=>(x-3)(x-6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

`c, x(x-1)(x+1)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

`d, (2x)/3 +(2x-1)/6=0`

`<=> (4x)/6 +(2x-1)/6=0`

`<=> (4x+2x-1)/6=0`

`<=> (6x-1)/6=0`

`<=> 6x-1=0`

`<=> 6x=1`

`<=>x=1/6` ( đề là vậy à bạn )

 

14 tháng 2 2023

 a) \(\left(2x-5\right)\left(12+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-2,4\end{matrix}\right.\)

b) \(\left(x-3\right)\left(x-4\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\left(x-4\right)-2\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-6\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

c) \(x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=0\end{matrix}\right.\)

d) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=0\)

\(\Leftrightarrow\dfrac{4x+2x-1}{6}=0\)

\(\Leftrightarrow6x-1=0\)

\(\Leftrightarrow6x=1\Leftrightarrow x=\dfrac{1}{6}\)

 

 

13 tháng 7 2017

1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

Đặt \(x^2+10x=t\)

Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)

\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)

Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)

Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

18 tháng 7 2017

Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^