\(\left|5x-4\right|\ge6\)

b. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)

2 tháng 4 2017

a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0

<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0

Bảng xét dấu:

Từ bảng xét dấu cho tập nghiệm của bất phương trình:

T = ∪ [2; +∞).

b) <=>

<=>

<=>

<=>

Tập nghiệm của bất phương trình T = (-; - 5) ∪ (- 1; 1) ∪ (1; +).

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

15 tháng 4 2017

a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:

(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0

⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0

=> x1 = (nhận), x2 = 5 (nhận)

Tập nghiệm S = {; 5}.

b) Bình phương hai vế:

(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0

=> x1 = , x2 = -1.

c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung

(x – 1)|x + 1| = (2x – 3)(-3x + 1)

  • Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x1 = ;
    x2 = .
  • Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 = (loại vì không thỏa mãn đk x < -1); x2 = (loại vì x > -1)

Kết luận: Tập nghiệm S = {; }

d) ĐKXĐ: x2 +5x +1 > 0

  • Với x ≥ ta được: 2x + 5 = x2 + 5x + 1
    => x1 = -4 (loại); x2 = 1 (nhận)
  • Với x < ta được: -2x – 5 = x2 + 5x + 1

=> x1 =-6 (nhận); x2 = -1 (loại).

Kết luận: Tập nghiệm S = {1; -6}.

8 tháng 4 2017

a) 6x + < 4x + 7 <=> 6x - 4x < 7 - <=> x <

< 2x +5 <=> 4x - 2x < 5 - <=> x <

Tập nghiệm của hệ bất phương trình:

Y = = .

b) 15x - 2 > 2x + <=> x >

2(x - 4) < <=> x < 2

Tập nghiệm S = ∩ (-∞; 2) =


1 tháng 3 2018

|3x+4)/(x-2)| <=3

<=>|3 +10/(x-2) | <=3

10/(x-2) =t

<=> |3+t| <=3

9 +6t +t^2 <=9 <=> -6<=t <=0

10/(x-2) <=0 => x<2

10/(x-2) >=-6 <=>5/(x-2)>=-3

<=>5 <=-3(x-2) <=>3x <=10-5 =5 => x <=5/3

kết luận x<= 5/3

17 tháng 3 2020

a) \(\left|\frac{3x+4}{x-2}\right|< =3̸\) đk: x\(\ne\) 2

BPT \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\frac{3x+4}{x-2}\ge-3\\\frac{3x+4}{x-2}\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{3x+4}{x-2}+3\ge0\\\frac{3x+4}{x-2}-3\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\frac{6x-2}{x-2}\ge0\\\frac{10}{x-2}\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{1}{3}\\x>2\end{matrix}\right.\\x< 2\end{matrix}\right.\Rightarrow}x\le\frac{1}{3}}\)

b) \(\left|\frac{2x-1}{x-3}\right|\ge1\) đk: x\(\ne\) 3

BPT \(\Leftrightarrow\left[{}\begin{matrix}\frac{2x-3}{x-3}\le-1\\\frac{2x-3}{x-3}\ge1\end{matrix}\right.\)

ta có:

+) \(\frac{2x-3}{x-3}\le-1\Leftrightarrow\frac{2x-3}{x-3}+1\le0\Leftrightarrow\frac{3x-6}{x-3}\le0\Leftrightarrow2\le x< 3\)

+) \(\frac{2x-3}{x-3}\ge1\Leftrightarrow\frac{2x-3}{x-3}-1\ge0\Leftrightarrow\frac{x}{x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x>3\end{matrix}\right.\)

vậy tập nghiệm là: \((-\infty;0]\cup[2;3)\cup(3;+\infty)\)

e: =>-3<5x-12<3

=>9<5x<15

=>9/5<x<3

f: =>3x+15>=3 hoặc 3x+15<=-3

=>3x>=-12 hoặc 3x<=-18

=>x<=-6 hoặc x>=-4

b: =>(2x-7)(x-5)<=0

=>7/2<=x<=5

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)

5 tháng 4 2017

a)

\(\left\{{}\begin{matrix}x^2\ge\dfrac{1}{4}\left(1\right)\\x^2-x\le0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)x^2-0,25\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

(2)\(x^2-x\le\) \(\Leftrightarrow0\le x\le1\)

Kết hợp (1) và (2) \(\Rightarrow\dfrac{1}{2}\le x\le1\)

b)

\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\left(1\right)\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\left(2\right)\end{matrix}\right.\)

Giải: \(\left(1\right)\left(x-1\right)\left(2x+3\right)>0\Leftrightarrow\left[{}\begin{matrix}x< -\dfrac{3}{2}\\x>1\end{matrix}\right.\)

Giải: (2) \(\left(x-4\right)\left(x+\dfrac{1}{4}\right)< 0\Leftrightarrow-\dfrac{1}{4}\le x\le4\)

Kết hợp điều kiện của (1) và (2) ta có:  (1;4] là nghiệm của hệ bất phương trình.

15 tháng 4 2017

a)

<=> f(x) = .

Xét dấu của f(x) ta được tập nghiệm của bất phương trình:

T = ∪ [3; +∞).

b)

<=> f(x) = = .

f(x) không xác định với x = ± 1.

Xét dấu của f(x) cho tập nghiệm của bất phương trình:

T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3).

c) <=> f(x) =

= .

Tập nghiệm: \(\left(-12;-4\right)\cup\left(-3;0\right)\).

17 tháng 11 2017

a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

\(\Leftrightarrow2x-y=3\)

b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)

Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý

c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)