K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

chưa học nhưng sẽ cố giải 

a,\(3\left(x-2\right)-\left(x-5\right)>21\)

\(< =>3x-6-x+5>21\)

\(< =>2x-1>21\)

\(< =>2x>21+1=22\)

\(< =>x>11\)

b,\(5\left(x+1\right)-7\left(x-3\right)< 10\)

\(< =>5x+5-7x+21< 10\)

\(< =>26-2x< 10< =>2x>16< =>x>8\)

24 tháng 8 2020

a) 3( x - 2 ) - ( x - 5 ) > 21

<=> 3x - 6 - x + 5 > 21

<=> 2x - 1 > 21

<=> 2x > 20

<=> x > 10

b) 5( x + 1 ) - 7( x - 3 ) < 10

<=> 5x + 5 - 7x + 21 < 10

<=> -2x + 26 < 10

<=> -2x < -16

<=> x > 8

a) Ta có: \(3\left(x-2\right)-\left(x-5\right)>21\)

\(\Leftrightarrow3x-6-x+5>21\)

\(\Leftrightarrow2x-1>21\)

\(\Leftrightarrow2x>22\)

hay x>11

Vậy: S={x|x>11}

b) Ta có: \(5\left(x+1\right)-7\left(x-3\right)< 10\)

\(\Leftrightarrow5x+5-7x+21-10< 0\)

\(\Leftrightarrow-2x+16< 0\)

\(\Leftrightarrow-2x< -16\)

hay x>8

Vậy: S={x|x>8}

22 tháng 8 2020

a) \(5\left(x-2\right)>3\left(x-4\right)\)

\(\Leftrightarrow5x-10>3x-12\)

\(\Leftrightarrow2x>-2\)

\(\Rightarrow x>-1\)

b) \(7\left(x+3\right)< 9\left(x-1\right)\)

\(\Leftrightarrow7x+21< 9x-9\)

\(\Leftrightarrow2x>30\)

\(\Rightarrow x>15\)

22 tháng 8 2020

c) Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

=> \(2x-5>0\Rightarrow2x>5\Rightarrow x>\frac{5}{2}\)

d) \(x^2-2x+5=\left(x-1\right)^2+4>0\left(\forall x\right)\)

\(\Rightarrow3x-8< 0\Rightarrow3x< 8\Rightarrow x< \frac{8}{3}\)

27 tháng 8 2020

a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

Ta có \(x^2+1\ge1>0\forall x\)

Để bpt < 0 => 2x( 3x - 5 ) < 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)

2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )

Vậy nghiệm của bất phương trình là 0 < x < 5/3

b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))

<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)

<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)

<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)

<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)

\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)

\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)

Xét các trường hợp

1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)

+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)

+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)

Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1

c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))

\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)

\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)

\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)

\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)

Xét hai trường hợp

1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )

2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)

Vậy nghiệm của bất phương trình là \(-18\le x< -5\)

d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))

\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)

\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)

\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

Vậy nghiệm của bất phương trình là x > 3

4 tháng 7 2016

bạn phân tích biểu thức thành nhân tử rồi xét :

Nếu >0 thì các nhân tử phải cùng âm hoặc dương

nếu <0 thì các nhân tử trái dấu

tương tự như phân số 

nếu >0 thì tử và mẫu cùng dấu

nếu <0 thì trái dấu

:) chúc bạn làm tốt nha dễ mà

14 tháng 9 2019

Giải

\(\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{2\left(x+1\right)}{x^2-1}+\frac{2\left(x-1\right)}{x^2-1}=\frac{2\left(x+1\right)+2\left(x-1\right)}{x^2-1}\)

\(\frac{2\left(x+1+x-1\right)}{x^2-1}=\frac{2\left(2x\right)}{x^2-1}=\frac{4x}{x^2-1}\)

Tới đây bí rồi

14 tháng 9 2019

Đợi tí mình giải cho !!!!!!