Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
gọi chiều dài của mảnh đất h.c.n là a (m a>2)
chiều rộng của h.c.n là b (m b> 4)
chiều rộng của mảnh đất khi tăng lên 4 m là b+4
chiều dài của mảnh đất khi tăng lăng lên 2 m là a+2
diện tích của mảnh đất là ab
theo bai ra ta co phương trình (1) : (a+2)(b+4)=ab+120
<=>2a+b=56
chiều rộng của mảnh đất khi giảm đi 1 là b-1
chiều dai của mảnh đất khi giảm đi 4 là a-4
theo bai ra ta co phương trình (2) (a-4)(b-1)=ab-45
<=>a+4b=49
từ (1) và(2) ta có HPT ...............
tự giải nốt nhé a=25m . b=6m
vậy chiều dài là 25m
chiều rông là 6 m
Gọi chiều dài của khu đất hcn là x (m)
chiều rộng của khu đất hcn là y (m)
ĐK: x;y > 0
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}\left(x+2\right)\left(y+4\right)=xy+120\\\left(x-4\right)\left(y-1\right)=xy-45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+4x+2y+8=xy+120\\xy-x-4y+4=xy-45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+4x+2y-xy=120-8\\xy-x-4y-xy=-45-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=112\\-x-4y=-49\end{cases}}\)(Nhân 4 cho pt dưới)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=112\\-4x-16y=-196\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-14y=-84\\4x+2y=112\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6\\4x+2.6=112\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6\\x=25\end{cases}\left(n\right)}\)
Vậy:..
Đặt chiều dai hình chữ nhật là a , chiều rộng là b ( \(a,b\inℝ^∗\)
Ta có hệ phương trình sau
\(\hept{\begin{cases}ab=300\\\left(a+4\right)\left(b+1\right)-ab=36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=300\\a+4b=32\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}ab=300\\a=32-4b\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(32-4b\right)b=300\\a=32-4b\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}-4b^2+32b=300\\a=32-4b\end{cases}}\)
Gọi \(x,y\left(m\right)\) là chiều dài và rộng \(\left(x,y>0\right)\)
Theo đề, ta có :
\(\left\{{}\begin{matrix}y+3=x\\\left(x+4\right)\left(y+2\right)=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\xy+2x+4y+8=xy+44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+y=-3\\2x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\left(tm\right)\\y=5\left(tm\right)\end{matrix}\right.\)
Diện tích hình chữ nhật ban đầu : \(8\times5=40\left(m^2\right)\)
Gọi x là chiều rộng mảnh đất. (x >0)
y là chiều dài mảnh đất. (y>0)
Ta có hệ PT xy = 300
(x-1) (y+4) = 336.
Bạn tự gải hẹ Pt đó đi rồi tìm kết quả.
Này cậu :)))))
Gọi chiều dài ban đầu của mảnh đất là x ( m ) và chiều rộng của mảnh đát là y ( m )
( 40 < x < 80 ; 0 < y < 40 )
Chi vi là 160 nên ta có phương trình: x + y = 160 : 2 ( 1 )
Nếu tăng chiều rộng thêm 10 m và giảm chiều dài đi 10 m thì diện tích mảnh đất tăng thêm 100^2 nên ta có phương trình: \(\left(x-10\right)\left(y+10\right)=xy+100\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=80\\\left(x-10\right)\left(y+10\right)=xy+100\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=50\\y=30\end{cases}}\) ( giải hệ tự giải lấy )
Vậy ............... P/s nếu vẫn chưa biết cách giải hệ thì ib tớ riêng tớ chỉ cho nha :P
Gọi chiều dài của hình chữ nhật ban đầu là x , m , x>15 \(x\in R\)
=> Chiều rộng của hình chữ nhật ban đầu là x-15 , m
=> Diện tích của hình chữ nhật ban đầu là \(x\left(x-15\right)\) , m2
Theo bài ra ta có :
Chiều dài của hình chữ nhật mới là : x + 5 , m
Chiều rộng của hình chữ nhật mới là : x - 5 , m
=> Diện tích hình chữ nhật mới là : \(\left(x+5\right)\left(x-5\right)\) , m2
Theo giả thiết đề nên ta có phương trình :
\(\left(x+5\right)\left(x-5\right)-x\left(x-15\right)=650\)
<=> x = 35,25 m
vậy chiều dài ban đầu là 35,25 m
chiều ring ban đầu là 20,25 m