K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

a.x = -3

b.\(\frac{13}{2}\)

c. (x+4)2

d. không bik

15 tháng 8 2020

Bài làm:

a) \(\left(x+4\right)^2-1=0\)

\(\Leftrightarrow\left(x+4\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)

b) \(\left(2x-3\right)^2=100\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)

c) \(x^2+8x+16=0\)

\(\Leftrightarrow\left(x+4\right)^2=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Rightarrow2x-3=0\)

\(\Rightarrow x=\frac{3}{2}\)

a) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)

b) Ta có: \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: S={2;3}

c) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: S={1;2}

d) Ta có: \(2x^2-6x+1=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)

mà \(2\ne0\)

nên \(x^2-3x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)

e) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)

25 tháng 1 2021

cho vào máy tính là ra hết

25 tháng 8 2023

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+8x+16=\left(x+4\right)^2\)

c) \(x^2+6x+9=\left(x+3\right)^2\)

d) \(4x^2+4x+1=\left(2x+1\right)^2\)

e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)

f) \(4x^2+12x+9=\left(2x+3\right)^2\)

g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)

h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)

25 tháng 8 2023

a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2

b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2

c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2

d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2

a) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: S={-5;2}

b) Ta có: \(3x^2-7x+1=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)

c) Ta có: \(3x^2-7x+8=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)

Vậy: \(x\in\varnothing\)

15 tháng 3 2022

ko bt

 

6 tháng 12 2019

\(a.3\left(x^2-2x+1\right)-3x^2+15x-2=0\)

\(3x^2-6x+3-3x^2+15x-2=0\)

\(9x+1=0\)

\(x=-\frac{1}{9}\)

\(b.4x^2-12x+9=0\)

\(4x^2-6x-6x+9=0\)

\(2x\left(x-3\right)-3\left(x-3\right)=0\)

\(\left(2x-3\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

6 tháng 12 2019

\(c.\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)