\(y=\sqrt{x^2}+\sqrt{x^2-4x+4}\)

kết quả bằng 2 nhưng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

\(y=\sqrt{x^2}+\sqrt{x^2-4x+4}\)

     =/x/ + /x-2/

vì /x/   >= 0

tương đương /x-2/ >= /0-2 /

hay /x/ + /x-2 / >= 2

vậy nên giá trị nhỏ nhất là 2

****mik cũng ko biết trình bày vậy có đúng hông ****

nếu thấy dc thi tick cho mik nha ****

6 tháng 8 2018

\(y=\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\) Điều kiện: \(x\ge2\)

\(\Rightarrow2y=2.\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+2.\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\)

\(=\sqrt{x^2+4\sqrt{x^2-4}}+\sqrt{x^2-4\sqrt{x^2-4}}\)

\(=\sqrt{x^2-4+4\sqrt{x^2-4}+4}+\sqrt{x^2-4-4\sqrt{x^2-4}+4}\)

\(=\sqrt{\left(\sqrt{x^2-4}+2\right)^2}+\sqrt{\left(\sqrt{x^2-4}-2\right)^2}\)

\(=\left|\sqrt{x^2-4}+2\right|+\left|\sqrt{x^2-4}-2\right|\)

\(=\sqrt{x^2-4}+2+\left|\sqrt{x^2-4}-2\right|\)(1)

TH1: \(\sqrt{x^2-4}-2\ge0\Rightarrow\sqrt{x^2-4}\ge2\Rightarrow x^2-4\ge4\Rightarrow x\ge2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2+\sqrt{x^2-4}-2=2\sqrt{x^2-4}\)

Do \(x\ge2\sqrt{2}\Rightarrow2\sqrt{x^2-4}\ge2\sqrt{\left(2\sqrt{2}\right)^2-4}=4\)

TH2:  \(\sqrt{x^2-4}-2< 0\Rightarrow\sqrt{x^2-4}< 2\Rightarrow x^2-4< 4\Rightarrow x^2< 8\Rightarrow2\le x< 2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2-\sqrt{x^2-4}+2=4\)

Vậy GTNN của y bằng 4.

Dấu "=" xảy ra khi \(2\le x\le2\sqrt{2}\)

2 tháng 8 2016

 cái này nên dùng Bđt căn a+ căn b>= căn a+b

mà cái này mk bt kq là MIn=2 khi x=2 nhưng khi dùng BĐt kia kq lại ko đúng

3 tháng 8 2016

Điều kiện xác định của hàm số: \(x\ge2\)

Khi đó \(y=\sqrt{x-2}+\sqrt{x+2}\ge0+\sqrt{2+2}=2\)

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt

17 tháng 2 2020

1. Xét điều kiện:

\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)

(1) <=> x \(\ge\)1 > 0   thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1

Do đó chỉ có thể xảy ra trường hợp x = 1

=> ĐK : x = 1

Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)

Vậy x = 1 là nghiệm của phương trình.

17 tháng 2 2020

bài 2: ĐK:\(0\le x\le1\)

+) Với điều kiện: A,B không âm

 \(\left(A+B\right)^2\ge A^2+B^2\)(1)

<=> \(A^2+B^2+2AB\ge A^2+B^2\)

<=> \(2AB\ge0\)luôn đúng

Dấu "=" xảy ra <=> A = 0 hoặc B = 0

Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)

=> \(\sqrt{1-x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=>  x = 0 hoặc x = 1

+) Với điều kiện C, D không âm

\(\left(C+D\right)^2\ge C^2-D^2\)(2)

Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)

<=> \(D\left(C+D\right)\ge0\)luôn đúng

Dấu "=" xayra <=> D = 0 hoặc C + D = 0

Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)

=> \(\sqrt{1+x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=> x = 0 

Vậy khi đó: 

\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)

\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)

\(\ge1+1=2\)

Dấu "=" xảy ra <=> x = 0

23 tháng 12 2016

a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)

\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)

Đẳng thức xảy ra khi \(A.B\ge0\)

b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)

Vậy minM = 5 tại \(-2\le x\le3\)

c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)

Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)

Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)

Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)