Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
|x + 2| + |x + 5| + |x - 7| + |x - 8|
= |x + 2| + |x + 5| + |7 - x| + |8 - x|
\(\ge\)|x + 2 + x + 5 + 7 - x + 8 - x| = 22
Nếu ko ai ở trên
trả lời chính xác thì bạn hãy lên h.vn nhé .^_^
\(A=2\sqrt{x}+x+12\)
\(=x+2\sqrt{x}+1+11\)
\(=\left(\sqrt{x}+1\right)^2+11\)
Vì \(\left(\sqrt{x}+1\right)^2\ge0\Rightarrow\left(\sqrt{x}+1\right)^2+11\ge11\)
Vậy GTNN của A là 11