Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
a) Ta có: \(\left(x-6\right)^2+207\ge207\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-6\right)^2=0\Rightarrow x=6\)
Vậy Min = 207 khi x = 6
b) Ta có: \(\left(x+5\right)^2+\left(y-9\right)^2+2021\ge2021\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y-9\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=9\end{cases}}\)
Vậy Min = 2021 khi \(\hept{\begin{cases}x=-5\\y=9\end{cases}}\)
\(A\ge2020\forall x,y\)
Dấu '=' xảy ra khi x=-5 và y=2021
Ta có:
\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)
\(\ge0+2021=2021\)
Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)
B