K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Vì \(\left(3x-\frac{3}{4}\right)^4\ge0\forall x\)\(\left|y+\frac{1}{2}\right|\ge0\forall y\)

\(\Rightarrow\left(3x-\frac{3}{4}\right)^4+\left|y+\frac{1}{2}\right|\ge0\forall x,y\)\(\Rightarrow M\ge2013\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-\frac{3}{4}=0\\y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=\frac{3}{4}\\y=\frac{-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}\)

Vậy \(minM=2013\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}\)

19 tháng 1 2022

Để E đạt GTLN thì \(\left|7x+5\right|\ge0\) với \(\forall x\in R\)nên

\(\left|7x+5\right|+4\ge0+4=4\)

\(\Rightarrow E=2+\frac{3}{\left|7x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)

Dấu ''='' xảy ra khi \(\left|7x+5\right|=0\Leftrightarrow x=-\frac{5}{7}\)

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee