Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
ta có \(\left(x-3\right)^2\ge0\forall x\in R\)
\(\left(x-3\right)^2+1\ge1\)
\(\frac{1}{\left(x-3\right)^2+1}\le1\)
\(\frac{5}{\left(x-3\right)^2+1}\le5\)
vậy gtln của bt là 5 khi x = 3
A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)
A nhỏ nhất khi x - 7 = 3 => x = 10
A lơn nhất khi x - 7 = -3 => x = 4
mình chỉ làm 1 bài thôi :
\(Q=1010-\left|3-X\right|\)
trường hợp này thì |3-x| phải là số tự nhiên bé nhất => |3-x|=0
=> 3-x=0
x=3-0=3
=> x=3
do (x+2)2>=0 với mọi x ; (y-2)2>=0 mọi y => (x+2)2 -(y-2)2>=0 mọi x,y => 4 -(x+2)2-(y-2)2>=4 với mọi x, y
dấu = xảy <=> x+2=0
=>x=-2 ; y=2
y-2=0
Với x= - 2;y= 2 thì giá trị lớn nhất của biểu thức là A=4
Để A có GTLN thì 3(2x-1)^2 nho nhất
mà 5-3(2x-1)^2 nên 3(2x-1)^2=0 ma x=1/2
với 3(2x-1)^2=3thi x=1
giá trị lớn nhất là 5-3(2x1-1)^2=2
Vay....
\(a)\) Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x )
\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) )
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)
\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~