Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2014|x-12|+(x-12)^2=2013|12-x|$
$\Rightarrow 2014|x-12|+|x-12|^2=2013|x-12|$
$\Rightarrow |x-12|+|x-12|^2=0$
$\Rightarrow |x-12|(1+|x-12|)=0$
Hiển nhiên $1+|x-12|\geq 1>0$ với mọi $x$
$\Rightarrow |x-12|=0$
$\Rightarrow x=12$
\(2014\left|x-12\right|+\left(x-12\right)^2=2013\left|12-x\right|\)
\(\Leftrightarrow2014\left|x-12\right|+\left(x-12\right)^2=2013\left|x-12\right|\)
Đặt \(t=\left|x-12\right|\left(t\ge0\right)\) ta có:
\(2014t+t^2=2013t\)
\(\Leftrightarrow t^2+t=0\)\(\Leftrightarrow t\left(t+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=-1\left(loai\right)\end{array}\right.\)
Với \(t=0\Rightarrow\left|x-12\right|=0\Rightarrow x-12=0\Rightarrow x=12\)
Vậy x=12
3x+2-3x=24
3x.(32-1)=24
3x.8=24
3x =24:8
3x =31
=>x=1
Vậy x=3
Chúc bn học tốt
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
A = |x - 1| + |x + 5| + (x - 2)2 + 2017
A = |x - 1| + |x + 5| + |(x - 2)2| + 2017
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017
Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017
A\(\ge\) |x2 - 2x + 8| + 2017
A \(\ge\) |x2 - x - x + 1 + 7| + 2017
A\(\ge\) |(x - 1)2 + 7| + 2017
A\(\ge\) (x - 1)2 + 2024
Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0
=> x \(\ge\)1; x \(\ge\)-5
=> x \(\ge\)1
Vậy GTNN của A là 2024 khi x = 1
2)a+b=ab=a/b
từ a+b=ab
=>a=ab-b=b(a-1)
=>a/b=a-1
mà a/b=a+b=>a+b=a-1=>b=-1
thay b=-1 vào a+b=ab ta được a+(-1)=a.(-1)=>a=1/2
vậy a=1/2=0,5;b=-1
x=-12
có cần giải chi tiet ko Mã Lương Kim
có cần chi tiêt ko để biết đây