K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Đổi \(200km/h = \frac{{500}}{9}m/s\)

Mô hình hoá như hình vẽ, với \(OA\) là quãng đường máy bay bay được sau 2 giây, \(OH\) là độ cao của máy bay so với mặt đấy khi máy bay bay được sau 2 giây, độ lớn của góc \(\widehat {AOH}\) chỉ số đo góc giữa máy bay với mặt đất.

Sau 2 giây máy bay bay được quãng đường là: \(\frac{{500}}{9}.2 = \frac{{1000}}{9}\left( m \right)\)

Vì tam giác \(OAH\) vuông tại \(H\) nên ta có:

\(AH = OA.\sin \widehat {AOH} = \frac{{1000}}{9}.\sin {20^ \circ } \approx 38,0\left( m \right)\)

Vậy độ cao của máy bay so với mặt đất là 38 mét sau khi máy bay rời khỏi mặt đất 2 giây.

16 tháng 8 2023

tham khảo:

Thông tin trên không đủ để ta xác định độ cao của máy bay so với mặt đất phẳng, tại thời điểm 1 phút kể từ khi máy bay cất cánh mà chỉ tính được quãng đường bay của máy bay bay được.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Sau 1 phút cả 2 máy bay bay được quãng đường dài \(1.v = v\)

Áp dụng công thức tính độ cao của máy bay so với mặt đất, ta tính được độ cao của hai máy bay 1 và 2 như sau:

Độ cao của máy bay 1: \({h_1} = v.\sin {10^0} \approx 0,17v\)

Độ cao của máy bay 2: \({h_2} = v.\sin {15^0} \approx 0,26v\)

Do đó, ta thấy rằng độ cao của máy bay 2 lớn hơn độ cao của máy bay 1. Vì vậy, máy bay 2 ở độ cao so với mặt đất lớn hơn sau 1 phút kể từ khi cất cánh.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Xét tam giác AHT vuông tại H, ta có: 

\(cot\alpha=\dfrac{TH}{AH}\Rightarrow TH=AH\cdot cot\alpha=500\cdot cot\alpha\)

Vậy trên trục \(T_x\) tọa độ \(x_H=500\cdot cot\alpha\)

b, Ta có đồ thị của hàm số \(y=cot\alpha\) trong khoảng \(\dfrac{\pi}{6}< \alpha< \dfrac{2\pi}{3}\)

Khi đó:

 \(-\dfrac{1}{\sqrt{3}}< cot\alpha< \dfrac{1}{\sqrt{3}}\Leftrightarrow-\dfrac{500}{\sqrt{3}}< 500\cdot cot\alpha< \dfrac{500}{\sqrt{3}}\\ \Leftrightarrow-\dfrac{500}{\sqrt{3}}< x_H< \dfrac{500}{\sqrt{3}}\\ \Leftrightarrow-288,7< x_H< 866\)

Vậy \(x\in\left\{-288,7;866\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(v\left(t\right)=h'\left(t\right)=-9,8t\)

a, Vận tốc của vật tại thời điểm t = 5s là \(v\left(5\right)=-9,8\cdot5=-49\left(m/s\right)\)

b, Khi vật chạm đất thì \(h\left(t\right)=100-4,9t^2=0 \Rightarrow t=\dfrac{10\sqrt{10}}{7}\left(s\right)\)

Khi đó, vận tốc vật chạm đất là: \(v\left(\dfrac{10\sqrt{10}}{7}\right)=-9,8\cdot\dfrac{10\sqrt{10}}{7}=-14\sqrt{10}\left(m/s\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Với \({x_0}\) bất kì, ta có:

\(f'\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{19,6t - 4,9{t^2} - 19,6{t_0} + 4,9t_0^2}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \frac{{ - 4,9\left( {{t^2} - t_0^2} \right) + 19,6\left( {t - {t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( { - 4,9t - 4,9{t_0} + 19,6} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( { - 4,9t - 4,9{t_0} + 19,6} \right) =  - 9,8{t_0} + 19,6\)

Vậy hàm số \(h = 19,6t - 4,9{t^2}\) có đạo hàm là hàm số \(h' =  - 9,8{t_0} + 19,6\)

Độ cao của vật khi nó chạm đất thỏa mãn \(19,6t - 4,9{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 4\end{array} \right.\)

Khi t = 4, vận tốc của vật khi nó chạm đất là \( - 9,8.4 + 19,6 =  - 19,6\) (m/s)

Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Ta có: 

\(48=16+32\\ 80=48+32\\ 112=80+32\\ 144=112+32\\ ...\)

Vậy dãy số trên là cấp số cộng có số hạng đầu \(u_1=16\) và công sai \(d=32\)

b, Tổng chiều dài quãng đường rơi tự do của người đó trong 10s đầu tiên là: 

\(S_{10}=\dfrac{10\cdot\left[u_1+\left(10-1\right)d\right]}{2}=\dfrac{10\cdot\left[2u_1+9d\right]}{2}=\dfrac{10\cdot\left(2\cdot16+9\cdot32\right)}{2}=1600\left(feet\right)\)

23 tháng 5 2018

Mỗi khi chạm đất quả bóng lại nảy lên một độ cao bằng 1/10 độ cao của lần rơi ngay trước đó và sau đó lại rơi xuống từ độ cao thứ hai này. Do đó, độ dài hành trình của quả bóng kể từ thời điểm rơi ban đầu đến:

- Thời điểm chạm đất lần thứ nhất là d 1   =   63

- Thời điểm chạm đất lần thứ hai là:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

- Thời điểm chạm đất lần thứ ba là:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

- Thời điểm chạm đất lần thứ tư là:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

....

- Thời điểm chạm đất lần thứ n (n > 1) là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(Có thể chứng minh khẳng định này bằng quy nạp).

Do đó, độ dài hành trình của quả bóng kể từ thời điểm rơi ban đầu đến khi nằm yên trên mặt đất là :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 

là một cấp số nhân lùi vô hạn, công bội q = 1/10 nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Sau một phút di chuyển, van V đã quay được một góc lượng giác có số đo góc là: \(\alpha=11\cdot60=660\left(rad\right)\)

Khi đó tọa độ điểm V biểu diễn cho góc lượng giác trên có tọa độ là: \(V\left(58\cdot cos\alpha,58\cdot sin\alpha\right)\approx\left(56;15,2\right)\)

Từ đó, khoảng cách từ van đến mặt đất khoảng \(58-15,2\approx42,8\left(cm\right)\)