Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2015 số đã cho không có 2 số nào bằng nhau
Không mất tính tổng quát giải sử \(a_1< a_2< a_3< ......< a_{2015}\)
Vì \(a_1;a_2;a_3;....a_{2015}\)đều là các số nguyên dương nên \(a_1\ge1;a_2\ge2;....;a_{2016}\ge2016\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+....+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+....+\left(\frac{1}{1024}+\frac{1}{1025}+\frac{1}{1026}+...+\frac{1}{2015}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{4}\cdot4+\frac{1}{8}\cdot8+....+\frac{1}{512}\cdot512+\frac{1}{1024}\cdot993\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+\frac{1}{2^3}\cdot2^3+......+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)
Trái với giải thiết. Do đó điều giả sử sai
Vậy trong 2015 số đã cho có ít nhất 2 số bằng nhau
Giả sử có ít nhất 2 trong 2015 số nguyên dương đã cho không có số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_{2015}\)
=> \(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)
=>\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+...+\frac{1}{2015}\left(1\right)\)
Ta lại có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2014}{2}=1008\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1008\), trái với giả thiết
Vậy có ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau
Giả sử trong 2021 số nguyên dương đã cho không có số nào bằng nhau.
Và a1 < a2 < a3 < ... < a2021 . Ta có :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2021}}\le\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2021}\)
\(\Rightarrow\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2021}}< \dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1010=1011\)
(mâu thuẫn)
⇒Điều giả sử sai. ⇒ Ít nhất 2 trong số 2021 số nguyên dương đã cho bằng nhau.
a) A = \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)với A .Ta được :
A .\(\frac{1}{7^2}\)= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
Ta có : \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A.\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
b)Giả sử a1 >a2 > a3 ...> a2015 nên a1 > a2015
Theo đề ra ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< \frac{1}{2016}+\frac{1}{2015}+...+1=A\)
A< \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)\)có 2007 số \(\frac{1}{8}\)
Mà \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)< 1+1+...+\frac{2018}{8}\)
Giả sử trong 2015 số nguyên dương đã cho không có số nào bằng nhau .
Và a1 < a2 < a3 < ... < a2015
Ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2011}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+1007=1008\)
=> Giả sử là sai => ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau ( đpcm )
Giả sử trong 97 số đã cho không có hai số nào bằng nhau
Không mất tính tổng quát ta giả sử \(a_1< a_2< a_3< ....< a_{97}\)
Vì \(a_1;a_2;a_3;....;a_{97}\) đều là số tự nhiên nên ta suy ra \(a_1\ge1;a_2\ge2;....;a_{97}\ge97\)
Suy ra
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{97}}\)\(< 1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{97}\)
\(=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+...+\left(\dfrac{1}{64}+\dfrac{1}{65}+...+\dfrac{1}{97}\right)\)
\(=1+\dfrac{1}{2}\cdot2+\dfrac{1}{2^3}\cdot2^3+...+\dfrac{1}{2^6}\cdot2^6=7< \dfrac{32}{2}=16\)
Mâu thuẫn với giả thiết. Do đó điều giả sử là sai
Vậy trong 97 số đã cho phải có ít nhất 2 số bằng nhau
Giả sử trong 2015 số nguyên dương a1, a2, ... , a2015 thỏa mãn :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}=1008\)và không có số nào bằng nhau.Ta có :
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}\le\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2015}\)
\(\Rightarrow\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2015}}< \dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1007=1008\)
(mâu thuẫn)
⇒Điều giả sử sai ⇒ có ít nhất 2 trong 2015 số nguyên dương đã cho
bằng nhau.