K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

\(f\left(x\right)>0\forall x\in R\Leftrightarrow\Delta'< 0\Leftrightarrow\left(m-1\right)^2-\left(m+5\right)< 0\Leftrightarrow m^2-3m-4< 0\Leftrightarrow\left(m+1\right)\left(m-4\right)< 0\Leftrightarrow-1< m< 4\).

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

NV
2 tháng 4 2020

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

NV
2 tháng 4 2020

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2>0\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\\left(-m\right)^2-m^2+3m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)

12 tháng 3 2020

\(f\left(x\right)=\left(m+2\right)x^2+2\left(m+2\right)x+m+3>0\) ∀x

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\\left(m+2\right)^2-\left(m+2\right)\left(m+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2+4m+4-m^2-5m-6< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\-m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m>-2\end{matrix}\right.\)

Vậy m>-2

18 tháng 9 2018

Đề viết thiếu, để ... (biểu thức trên) lớn hơn 0, ...

28 tháng 9 2018

m thuộc (1;5)?

NV
14 tháng 3 2020

Để tam thức ko đổi dấu trên R

\(\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow\left(m+1\right)^2-\left(m^2+2\right)^2< 0\)

\(\Leftrightarrow\left(m^2+m+3\right)\left(-m^2+m-1\right)< 0\)

\(\Leftrightarrow\left(m^2+m+3\right)\left(m^2-m+1\right)>0\) (luôn đúng)

Vậy với mọi m thì \(f\left(x\right)>0\)

12 tháng 3 2020

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2< 0\\\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m^2-6m+9-m^2+3m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m+7< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m>\frac{7}{3}\end{matrix}\right.\) (vô lý)

=> Ko tồn tại m t/m đề bài