K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

a) A = \(2x^2+x-1=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)\)\(-\frac{9}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

\(\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\Leftrightarrow A\ge-\frac{9}{8}\)

Dấu = xảy ra \(\Leftrightarrow\)\(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA =\(-\frac{9}{8}\)khi \(x=-\frac{1}{4}\).

b) B=\(5x-3x^2+2=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{49}{12}=-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\)

\(\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2\le0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\forall x\Leftrightarrow B\le\frac{49}{12}\forall x\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy maxB = \(\frac{49}{12}\)khi \(x=\frac{5}{6}\).

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$

Khai triển ta có:

$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$

Đồng nhất hệ số thu được:

\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)

Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$

$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:

$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$

Từ đây ta có những bộ số thỏa mãn là:

$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$

Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$

 

 

 

4 tháng 6 2018

Mình làm vầy thôi chứ không chắc chắn đúng hay sai đâu nha.

x^2 - x + 31 = x^2 - 2.x.1/2 + (1/2)^2 + 123/4

= (x - 1/2)^2 + 123/4

Vì (x - 1/2)^2 lớn hơn hoặc bằng 0 nên để biểu thức có giá trị nhỏ nhất thì (x - 1/2)^2 phải bằng 0

Vày biểu thức có giá trị nhỏ nhất bằng: 123/4 khi x=1/2

4 tháng 6 2018

GTNN của A = x2 - x + 31

=> A = x- x + 31 = x ( x - 1 ) + 31

=> Min A = 31 khi :

x ( x - 1 ) = 0

\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

=> GTNN A = 31

5 tháng 9 2020

a, \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)

b, \(-7x^2\left(3x-4y\right)=-21x^3+28x^2y\)

c, \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)

\(=x^2+2x-8-x^2+6x-9=8x-17\)

5 tháng 9 2020

Bạn ơi bạn giúp mình hết đc k??

28 tháng 7 2017

1, \(A=3x^2+5x-1\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)

Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)

Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)

2,3 tương tự

4, \(A=2x^2+7x\)

\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)

\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)

Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)

Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)

5, 6 tương tự

7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5

8, \(A=x^2-4x+y^2-8x+6\)

\(=x^2-4x+4+y^2-8x+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Vậy \(MIN_A=-14\) khi x = 2 và y = 4

24 tháng 4 2021

T = x2 + 2xy + y2 - 2x - 2y - 1 

= (x + y)2 - 2(x + y) + 1 - 2

= (x + y - 1)2 - 2 \(\ge\)-2 

Dấu "=" xảy ra <=> x + y - 1 = 0

=> x + y = 1

Vậy Min A = -2 <=> x + y = 1