Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D n là số chính phương nên: \(n=k^2\left(k\in N\right)\)
Với k = 0 thì n = 0, \(n^3+2n^2+2n+4=4\)(thõa)
Với \(k\ge1\)thì ta có
\(\left(k^3+k+1\right)^2\ge k^6+2k^4+2k^2+4>\left(k^3+k\right)^2\)
Vì \(k^6+2k^4+2k^2+4\)là số chính phương nên
\(\left(k^3+k+1\right)^2=k^6+2k^4+2k^2+4\)
\(\Leftrightarrow k=1\)
\(\Rightarrow n=1\)
Vậy n = 0 hoặc n = 1
a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)
Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)
c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)
Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)
Mà \(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)
giải ra giúp ạ