<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Nguyễn Huy Tú

Bài 1

phần b

đề bài tìm x thuộc Z

=> đáp số không thể là một Bất đẳng thức nhé

\(2\le x\le8\) không cần biết cần đúng hay sai nhưng đáp số Sai

2 tháng 6 2017

Chắc bỏ!!!!

Huhuhuhu!!!!

Khó quá!!!!

29 tháng 5 2017

tú ra đề khó quá

29 tháng 5 2017

nhưng cũng rất hay

24 tháng 11 2016

Tks thấy :))

24 tháng 11 2016

Arigatou sensei! ( em ko biết mình có làm đc cái trò trống gì ko...nhưng sẽ cố gắng)leuleu

3 tháng 3 2019

Wow troll ak

Trang web có an toàn ko

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 30 / 12 / 2018; 10 giờNgày nộp : 30 / 12 / 2018;10 giờ 30 Ngày trao thưởng : 1/1/2019;10 giờ -------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP*Thể lệ thi:    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 30 / 12 / 2018; 10 giờ

Ngày nộp : 30 / 12 / 2018;10 giờ 30 

Ngày trao thưởng : 1/1/2019;10 giờ 

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề :

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

 Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

đè ngữ văn

GIẢI CHI TIẾT Äá» thi thá»­ VÄn THPT Ngô Gia Tá»± - VÄ©nh Phúc lần 3

2
31 tháng 12 2018

nhanh đe

31 tháng 12 2018

Bài 1 :

+>

Nhân 3 vào 2 vế ta được:

 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

     =1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

     =[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

     =n.(n+1).(n+2) 

=> A = \(\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)

+> 

Nhân 4 vào 2 vế ta được:

 4B = 4. [1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)]

 4B = 1.2.3.4 + 2.3.4.4 + ... +(n-1)n(n+1).4

 4B= 1.2.3.4 + 2.3.4.(5-1)  +... + (n-1)n(n+1) [ (n+2) - (n-2)]

 4B = ( n-1) .n(n+1) . (n+2)

   B = \(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

Mình làm hơi tắt mong bạn bỏ qua

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 29 / 12 / 2018Ngày nộp : 15 / 1 / 2019Ngày trao thưởng : 20/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi: ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

\(\sqrt{x^2+4x+5}=1\)

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

 

 

1
27 tháng 12 2018

cảm on Nguyen Chau Tuan Kietvề bài 

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

√x2+4x+5=1

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 29 / 12 / 2018Ngày nộp : 15 / 1 / 2019Ngày trao thưởng : 20/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi: ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

\(\sqrt{x^2+4x+5}=1\)

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

15
27 tháng 12 2018

Câu 1 :

\(\sqrt{x^2+4x+5}=1\)

\(\left(\sqrt{x^2+4x+5}\right)^2=1^2\)

\(x^2+4x+5=1\)

\(x^2+4x=-4\)

\(x\left(x+4\right)=-4\)

Xét bảng :

x1-12-24-4
x+4-44-22-11
x11-12-24-4
x2-80-6-2-5-3

Xét thấy chỉ có x = -2 và x + 4 = 2 thì x1 = x2 = -2 => chọn

Các trường hợp còn lại loại vì nghiệm của x1 và x2 phải bằng nhau

Vậy x = -2

xét tam giác BAE và tam giác BME xcos 

    BA=BM (gt)

    góc BAE =góc MEB (gt)

BE cạnh chung 

VẬY tam giác BAE=tam giác BME (c_g_c)

b)  ta có tam giác BAE=tam giác BME

=> góc BMA=góc BME=90 độ(đpcm)

Được sự đồng ý của thầy @phynit, sau đây mình xin tổ chức cuộc thi toán:Mình sẽ lấy 60 bạn đầu tiên đăng kí ( hãy nhanh tay đăng kí nhé )Luật thi: - Vòng 1: Loại 30 bạn có số điểm thấp hơn, bạn nào xuất sắc làm đúng tất cả thì +1đ vào vòng sau.Thời gian: 11/11/2016 đến 18/11/2016- Vòng 2: Loại 20 bạn có số điểm thấp hơn, bạn nào xuất sắc làm đúng tất cả thì +1đ vào vòng sau.Thời...
Đọc tiếp

Được sự đồng ý của thầy @phynit, sau đây mình xin tổ chức cuộc thi toán:

Mình sẽ lấy 60 bạn đầu tiên đăng kí ( hãy nhanh tay đăng kí nhé )

Luật thi:

- Vòng 1: Loại 30 bạn có số điểm thấp hơn, bạn nào xuất sắc làm đúng tất cả thì +1đ vào vòng sau.

Thời gian: 11/11/2016 đến 18/11/2016
- Vòng 2: Loại 20 bạn có số điểm thấp hơn, bạn nào xuất sắc làm đúng tất cả thì +1đ vào vòng sau.
Thời gian: 19/11/2016 đến 26/11/2016
- Vòng 3 - vòng chung kết: Trận đấu giữa 10 bạn xuất sắc.
Thời gian: 27/11/2016 đến 5/12/2016
Lưu ý:
- Đề thi là dạng toán nâng cao lớp 7 nên các bạn không quan trọng lớp 6 hay 7 hay 8 hay 9 đều có thể tham gia cuộc thi.
- Cách thức trả lời sẽ được thông báo sau
- Nếu ai có hành vi gian lận sẽ bị thầy @phynit khóa nik trong vòng 1 tháng
Phần thưởng:
 
1. Giải nhất: thẻ cào 100k + 20GP
 
2 Giải nhì: Thẻ cào 50K + 15 GP
 
3 Giải ba: +15 GP
 
Tôi xin trân trọng cảm ơn!!!
 
 
18
6 tháng 11 2016

oa mình trả lời đâu tiên

6 tháng 11 2016

Nhưng phải nêu ra gian lận như thế nào mới bị khóa nick chứ

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 2Ngày ra đề  : 1 / 1 / 2018Ngày nộp : 18 / 1 / 2019Ngày trao thưởng : 23/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì  : 8 SPBa  : 6 SPKhuyến khích  : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi:    +Mỗi lần đăng lên...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 2

Ngày ra đề  : 1 / 1 / 2018

Ngày nộp : 18 / 1 / 2019

Ngày trao thưởng : 23/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì  : 8 SP

Ba  : 6 SP

Khuyến khích  : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

     + Ai không đáp ứng đủ thể lệ sẽ bị loại

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Tìm các số nguyên n sao cho biểu thức sau là số nguyên: P= \(\frac{2n-1}{n-1}\)

Câu 2 : Bạn An mang một số tiền đến nhà sách để mua tập và bút. Số tiền bạn An mang theo vừa đủ để mua 3 cuốn tập hoặc 6 cây bút đỏ hoặc 10 cây bút xanh. Biết rằng giá của một cây bút đỏ cao hơn so với giá một cây bút xanh là 2000 đồng. Hỏi giá của mỗi cuốn tập, mỗi cây bút đỏ, mỗi cây bút xanh là bao nhiêu tiền?

Câu 3 : 

Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC.

7
1 tháng 1 2019

Câu 1 : Tìm các số nguyên n sao cho biểu thức sau là số nguyên:

 \(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

ĐKXĐ  \(n\ne1\)

Để P nguyên <=> \(1\text{ }\text{ }\text{ }⋮\text{ }n-1\)

hay \(n-1\text{ }\inƯ\left(1\right)=\left\{-1;+1\right\}\)

Vậy \(x\in\left\{0;2\right\}\text{ }\)thì P nguyên 

1 tháng 1 2019

Câu 1 : \(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

\(\Rightarrow P\inℤ\Leftrightarrow\frac{1}{n-1}\inℤ\)\(\Leftrightarrow1⋮n-1\)

 \(\Leftrightarrow n-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow n=0;2\)

Vậy n = 0; 2 thì P có giá trị là số nguyên