\(\left(\frac{1}{3}\right)^{202}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

\(\left(\frac{1}{3}\right)^{202}=\left[\left(\frac{1}{3}\right)^2\right]^{101}=\left(\frac{1}{9}\right)^{101}=\frac{1}{9^{101}}\)

\(\left(\frac{1}{2}\right)^{303}=\left[\left(\frac{1}{2}\right)^3\right]^{101}=\left(\frac{1}{8}\right)^{101}=\frac{1}{8^{101}}\)

Ta có: \(9>8\Rightarrow9^{101}>8^{101}\Rightarrow\frac{1}{9^{101}}< \frac{1}{8^{101}}\)

\(\Rightarrow\left(\frac{1}{2}\right)^{303}>\left(\frac{1}{3}\right)^{202}\)

9 tháng 7 2018

Bạn tham khảo nhé 

a )  Ta có : 

\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)

\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)

Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)

\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)

b ) 

Ta có : 

\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)

\(50^{20}=50^{10}.50^{10}\)

Do \(50^{10}.51^{10}>50^{10}.50^{10}\)

\(\Rightarrow50^{20}< 2550^{10}\)

c ) 

Ta có : 

\(2^{100}=\left(2^4\right)^{25}=16^{25}\)

\(3^{75}=\left(3^3\right)^{25}=27^{25}\)

\(5^{50}=\left(5^2\right)^{25}=25^{25}\)

Do \(16^{25}< 25^{25}< 27^{25}\)

\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)

9 tháng 7 2018

b)255010>250010=5020

=>255010>5020

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

20 tháng 7 2018

1.

a)\(\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

b)\(\left(x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2=\sqrt{1}\\x-2=-\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{1}+2\\x=-\sqrt{1}+2\end{cases}}\)

Mấy câu kia tương tự,bạn tự làm nha :)) 

15 tháng 6 2019

a/ \(\left(\frac{-2}{3}\right)^4:24=\frac{16}{81}:24=\frac{2}{243}\)

b/ \(\left(\frac{3}{4}\right)^3.4^4=\frac{27}{64}.256=108\)

c/ \(\frac{3.0,8^5}{2,4^4}=\frac{3.0,32768}{33,1776}=\frac{0,98304}{33,1776}=\frac{4}{135}\)

d/ \(\frac{3^3-0,9^5}{2,7^4}=\frac{27-0,59049}{53,1441}=\frac{26,40951}{53,1441}=0,4969415231\)

e/\(\left(\frac{-7}{2}\right)^2+\left(\frac{-3}{4}\right)^3.64-\left(\frac{-61}{5}\right)\)

\(=\frac{49}{4}+\frac{-27}{64}.64+\frac{61}{5}\)

\(=12,25-27+12,2\)

\(=-2,55\)

f/ \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.5^2.2^2}\)

                                      \(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}=1-\frac{5}{1}=-4\)

                                       \(\)

chúc bạn học tốt

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
26 tháng 6 2018

a)\(\left(\frac{-1}{3}\right)^3\cdot x=\frac{1}{81}\) \(< =>\frac{-1}{27}x=\frac{1}{81}\)\(< =>x=\frac{-1}{3}\)

28 tháng 9 2018

phân tích kết quả ra bạn nhé

3 tháng 12 2019

1) So sánh

Ta có : 224 = 23.8 = (23)8 = 88

           316 = 32.8 = (32)8 = 98

Vì 88 < 98

=>  224 < 316 

2) Tính

\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)

3) Tìm x nguyên

(x - 1)x + 2 = (x - 1)x + 6

=> (x - 1)x + 6 - (x - 1)x + 2 = 0

=> (x - 1)x + 2.[(x - 1)4 - 1] = 0

=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 0 => x = 1(tm)

Nếu x - 1 = - 1 => x = 0(tm)

Nếu x - 1 = 1 => x = 2(tm)

Vậy \(x\in\left\{1;0;2\right\}\)

3 tháng 12 2019

Bài 1:Ta có:

2^24=2^(6.4)=64^4

3^16=3^(4.4)=81^4

Bài 2.Ta có:

(0.25)^4=1/4.1/4.1/4.1/4=1/256

=>1/256.1024=4

Bài 3:

Ta có:(x-1)^(x+2)=(x-1)^(x+6)

Chia hai vế cho (x-1)^(x+2),do đó:

1=(x-1)^(x+4)

<=>x-1=1

<=>x=2

Hoặc chia hai vế cho (x-1)^(x+6)

(x-1)^(x-4)=1

<=>x-1=1

<=>x=2

6 tháng 8 2018

ĐK:  \(x\ne\left\{0;-1;-2;-3\right\}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\Leftrightarrow\)\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\Leftrightarrow\)\(-\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow\)\(x+3=-2017\)

\(\Leftrightarrow\)\(x=-2020\)

Vậy...

6 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\frac{1}{x}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(-\frac{1}{x+3}=\frac{1}{2017}\)

\(-2017=x+3\)

\(x=-2020\)