K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

a)thay k=0, ta có

\(4x^2-25+0^2+4.0.x=0\)

\(\Leftrightarrow4x^2-25+0+0=0\)

\(\Leftrightarrow4x^2-25=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)

b) Thay k=-3, ta có:

\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)

\(\Leftrightarrow4x^2-25+9-12x=0\)

\(\Leftrightarrow4x^2-16-12x=0\)

\(\Leftrightarrow4x^2-16+4x-16x=0\)

\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)

\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)

c) Thay x=-2, ta có:

\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)

\(\Leftrightarrow16-25+k^2-8k=0\)

\(\Leftrightarrow-9+k^2-8k=0\)

\(\Leftrightarrow-9+k^2+k-9k=0\)

\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)

\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)

\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)

2.Tim x

a,(2x+1)2-4(x+2)2=9

<=> (4x2+4x+1)-4(x2+4x+4)=9

<=> -12x-15=9

<=> -12x=24

<=> x=-2

19 tháng 6 2019

\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)

\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)

\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)

7 tháng 9 2017
ở trong sách nào đó bạn
11 tháng 10 2019

1)  (3x+4)(x+1) = 3x2+7x+4 đặt là a

(6x+7)2= 36x2+84x+49 = 12a+1

=> a(12a+1)- 6 = 12a2 -a -6 = (3a+2)(4a-3) = (9x2+21x+14)(12x2+28x+13)

2) (x-2)2=x2-4x+4 đặt là a

(2x-5)(2x-3)= 4x2-16x+15 =4a-1

=> a(4a-1)-5 = 4a2-a-5 = (4a-5)(a+1) = ( 4x2-16x+11)(x2-4x+5)

3) đặt (x+3)2 =a ta làm tương tự

4) (x-2)(x-10)(x-4)(x-5) = (x2-12x+20)(x2-9x+20)

đặt x2+20=a => (a-12x)(a-9x)-54x2 = a2-21ax+54x2 = (a-18x)(a-3x) = (x2-18x+20)(x2-3x+20)

27 tháng 2 2019

a) Thay \(x=1\)vào pt ta được :

\(1+k-4-4=0\)

\(\Leftrightarrow k-7=0\)

\(\Leftrightarrow k=7\)

b) Thay \(k=7\)vào pt ta được :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(x-1=0\Leftrightarrow x=1\)

\(x^2+8x+4=0\)

Ta có :  \(\Delta=8^2-4\times4=48>0\)

\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)

Vậy ...

17 tháng 7 2019

x^18 - k mn

17 tháng 7 2019

(x-1)^3(x+1)^2(x^2+1)(x^2+x+1)