K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
1 tháng 12 2019

a) Xét ΔABM và ΔCKM có:

MA=MC(gt)

MB=MK(gt)

góc BMA= góc CMK( 2 góc đối đỉnh )

=>ΔABM=ΔCKM( c.g.c)

=> góc MAB= góc MCK=90o

=>KC vuông góc với AC

b) Xét ΔBMC  và ΔKMA có:

MA=MC(gt)

góc BMC= góc AMK( 2 góc đối đỉnh )

=>ΔBMC=ΔKMA(c.g.c)

=> góc MBC= góc MKA

=>BC//AK

1 tháng 12 2019

a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )

⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)

Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)

Từ (1) và (2) ⇒A1ˆ=C1ˆ

Xét ΔAHB,ΔCKA có:

A1ˆ=C1ˆ(cmt)

AB = AC ( gt )

H^=K^=90o

⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )

⇒AH=CK( cạnh t/ứng ) ( đpcm )

b) Vì ΔAHB=ΔCKA

⇒BH=AK,AH=CK( cạnh t/ứng )

Ta có: HK=AK+AH=BH+CK(đpcm)

Vậy...

Chúc bạn học tốt

1 tháng 8 2019

A B C D E

t chỉ chứng minh được  CD = BE thôi

a, góc DAB = góc EAC = 90 

góc BAC chung

góc DAB + góc BAC = góc DAC

góc EAC + góc BAC = góc EAB 

=> góc DAC = góc EAB 

xét tam giác DAC và tam giác BAE có : 

AE = AC do tam giác AEC vuông cân tại A (gt)

AD = AB do tam giác ABD vuông cân tại A (Gt)

=> tam giác DAC = tam giác BAE (c-g-c)

=> CD = BE (đn)

b, vẽ hình lại nhìn cho rõ

A B C H D E M N O

AH căt DE tại O

Kẻ EM _|_ AO tại M

Kẻ DN _|_ AO tại N

+ có góc BAH + góc BAD + góc DAN = 180 

mà góc BAD = 90 do tam giác BAD vuông cân tại A (GT)

=> góc BAH + góc DAN = 90

mà góc BAH + gócABH = 90 do tam giác ABH vuông tại H 

=> góc DAN = góc ABH 

xét tam giác AND và tam giác BHA có :  AB = AD (câu a)

 góc DNA = góc BHA = 90 

=> tam giác AND = tam giác BHA (ch-gn)

=> AH = DN (đn)     (1)

+ góc HAC + góc CAE + góc EAM = 180 

góc CAE = 90 (câu a)

=> góc HAC + góc EAM = 90 

góc HAC + góc HCA = 90 do tam giác HAC vuông tại H 

=> góc EAM = góc HCA 

xét tam giác AHC và tam giác EMA có : AC = AE (câu a)

góc AHC = góc EMA = 90 

=> tam giác AHC = tam giác EMA (ch-gn)

=> AH = ME (đn)      (2) 

(1)(2) => ME = DN      (3)

DN _|_ AH (cách vẽ)

EM _|_ AH (cách vẽ) 

=> DN // EM (tc)

=> góc NDO = góc OEM (2 góc slt)     

xét tam giác DNO và tam giác EMO có : góc DNO = góc EMO = 90 và (3)

=> tam giác DNO = tam giác EMO (gn-cgv)

=> DO = OE 

mà O nằm giữa D; E

=> O là trung điểm của DE