K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

qua học 24 mà coi

29 tháng 7 2017

\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)

xong AM -GM

29 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{\sqrt{3a^2+4ab+b^2}}=\dfrac{1}{\sqrt{\left(a+b\right)\left(3a+b\right)}}=\dfrac{\sqrt{2}}{\sqrt{\left(2a+2b\right)\left(3a+b\right)}}\)

\(\ge\dfrac{\sqrt{2}}{\dfrac{2a+2b+3a+b}{2}}=\dfrac{\sqrt{2}}{\dfrac{5a+3b}{2}}=\dfrac{2\sqrt{2}}{5a+3b}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{\sqrt{3b^2+4bc+c^2}}\ge\dfrac{2\sqrt{2}}{5b+3c};\dfrac{1}{\sqrt{3c^2+4ca+a^2}}\ge\dfrac{2\sqrt{2}}{5c+3a}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\ge\dfrac{2\sqrt{2}}{5a+3b}+\dfrac{2\sqrt{2}}{5b+3c}+\dfrac{2\sqrt{2}}{5c+3a}\)

\(\ge\dfrac{18\sqrt{2}}{8\left(a+b+c\right)}=\dfrac{18\sqrt{2}}{8}=\dfrac{9\sqrt{2}}{4}\)

Xảy ra khi \(a=b=c=\dfrac{1}{3}\)

24 tháng 10 2019

\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)

\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)

\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)

Dấu = xảy ra khi a=1

24 tháng 10 2019

Ta có:

\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)

\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)

Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)

Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)

\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)

Dấu "=" xảy ra tại \(a=b=c=1\)

5 tháng 10 2020

a) \(A=\frac{1}{2}\sqrt{32}+\sqrt{98}-\frac{1}{6}\sqrt{18}=\frac{1}{2}\sqrt{4^2.2}+\sqrt{7^2.2}-\frac{1}{6}.\sqrt{3^2.2}\)

\(=\frac{1}{2}\sqrt{4^2}.\sqrt{2}+\sqrt{7^2}.\sqrt{2}-\frac{1}{6}.\sqrt{3^2}.\sqrt{2}\)\(=\frac{1}{2}.4\sqrt{2}+7\sqrt{2}-\frac{1}{6}.3.\sqrt{2}\)\(=2.\sqrt{2}+7\sqrt{2}-\frac{1}{2}\sqrt{2}=\left(2+7-\frac{1}{2}\right)\sqrt{2}=\frac{17}{2}\sqrt{2}\)

23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3

13 tháng 8 2020

c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)

Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)    1    -1   2   -2
    x     8   4 (ktm) 25 1

Vậy ....