Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 10 em bé mỗi em bé có không quá 4 chiếc kẹo.
Khi đó số chiếc kẹo là :
4 x 10 = 40 viên kẹo ( ít hơn 50 - 40 = 10 viên kẹo )
Theo nguyên lí Dirichlet phải có tồn tại hai em co số kẹo bằng nhau
\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)
S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = ( 3 + 32 + 33 ) +34 + 35 + 36 + 37 + 38 + 39
S = 39 + 34 + 35 + 36 + 37 + 38 + 39
Vì 39 ⋮ -39
<=> S ⋮ -39
Ta có: n3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> n3+5nn3+5n chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)
Đặt: \(f\left(x\right)=a.x^n+b.x^{n-1}+...+m\left(n>1;m\in R\right)\)
Ta có: \(f\left(5\right)=a.5^n+b.5^{n-1}+...+m⋮7\)
Mà: \(5^k\) không chia hết cho \(7\left(k\in N\right)\)
\(\Rightarrow\) Đề \(f\left(5\right)⋮7\) thì \(a,b,c,....,m⋮7\)
Ta có: \(f\left(7\right)=a.7^n+b.7^{n-1}+...+m⋮5\)
Mà: \(7^k\) không chia hết cho \(5\left(k\in N\right)\)
\(\Rightarrow\)Đề \(f\left(7\right)⋮5\) thì \(a,b,c,...,m⋮5\)
Mà: \(\left(5;7\right)=1\Rightarrow a,b,c,...,m⋮5.7=35\)
\(\Rightarrow f\left(x\right)⋮35\)
\(\Rightarrow f\left(12\right)⋮35\)
Vậy ..........
(???)
lần đầu mk cx định giải như thế nhưng nghĩ lại thjaay sai
ví dụ \(25a+5b+c⋮7\)không nhất thiết a,b,c chia hết cho 7
ví dụ a = 3,b=2,c=55 vẫn chia hết cho 7
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
Xét 32 số có dạng 32,3232,...,3232...3232
Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31
Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)
Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )
Mặt khác (10m,31)=1
Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31