Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABM và ACM có
-AB=AC (gt)
-góc B = góc C (gt)
-AM là cạnh chung
suy ra tam giác ABM = tam giác ACM (c-g-c)
tam giác ABM = tam giác ACM (cmt) suy ra: góc M1 = góc M2
Mà góc M1 + góc M2 =180 độ
suy ra góc M1= góc M2 = 90 độ
suy ra AM vuông góc với BC
Bài làm
A B C M D I
a) Xét tam giác ABD và tam giác MBD có:
AB = AM ( gt )
\(\widehat{ABD}=\widehat{DBC}\)( Do BD phân giác )
Cạnh BD chung
=>Tam giác ABD = tam giác MBD ( c.g.c )
b) Vì tam giác ABD = tam giác MBD ( cmt )
=> \(\widehat{BAD}=\widehat{BMD}\)
Mà \(\widehat{BAD}=90^0\)
=> \(\widehat{BAD}=\widehat{BMD}=90^0\)
=> DM vuông góc với BC
d) Gọi AO là tia đối của tia AB
Xét tam giác ABC có:
\(\widehat{OAC}=\widehat{ABC}+\widehat{BCA}\)
=> \(\widehat{OAC}>\widehat{BCA}\) (1)
Ta có: \(\widehat{OAC}+\widehat{BAC}=180^0\)( hai góc kề bù )
\(\widehat{CMD}+\widehat{BMD}=180^0\)( hai góc kề bù )
Mà \(\widehat{BAC}=\widehat{BMD}\)( cmt )
=> \(\widehat{OAC}=\widehat{CMD}\) (2)
Từ (1) và (2) => \(\widehat{CMD}>\widehat{BCA}\)
Xét tam giác MDC có:
\(\widehat{CMD}>\widehat{BCA}\)
Theo quan hệ giữa góc và cạnh đối diện có:
DC > DM
Mà DM > AD ( Do tam giác ABD = tam giác MBD )
=> DC > AD
Vậy DC > AD.
d) Xét tam giác ABI và tam giác MBI có:
AB = AM ( gt )
\(\widehat{ABI}=\widehat{MBI}\)( Do BD phân giác )
BI chung
=> Tam giác ABI = tam giác MBI ( c.g.c )
=> \(\widehat{BIA}=\widehat{BIM}\)
Mà \(\widehat{BIA}+\widehat{BIM}=180^0\)( Hai góc kề bù )
=> \(\widehat{BIA}=\widehat{BIM}=\frac{180^0}{2}=90^0\)
=> BI vuông góc AM (3)
Vì tam giác ABI = tam giác MBI ( cmt )
=> AI = IM (4)
Từ (3) và (4) => BI là trung trực của AM
Mà I thuộc BD
=> BD là đường trung trực của AM ( đpcm )
# Học tốt #
mik chỉ giải vắn tắt thoai vì mik sắp pải tắt máy, mak nhớ tick cho mềnh đấy.
TRƯỚC HẾT TA CM BÀI TOÁN PHỤ:
CHO T/G ABC, M LÀ TRUNG ĐIỂM AB, N LÀ TRUNG ĐIỂM AC (BẠN TỰ VẼ). TRÊN TIA ĐỐI NM KẺ ND=NM. NỐI DC, DB.
SAU KHI LÀM XONG, TA SẼ CM ĐC MN//BC VÀ MD=BC
=> 1/2 MD= 1/2 BC
=>MN=1/2 BC
TRỞ LẠI BÀI TOÁN: XÉT T/G ACB CÓ: E LÀ TRUNG ĐIỂM AC (G/T)
M LÀ TRUNG ĐIỂM BC (G/T)
=> EM//AB VÀ EM=1/2 AB
MÀ EM=EH=1/2 HM
=> AB= HM
xét t/g AEH = t/g CEM (c-g-c)
=> AH=MC
MÀ MC=MB (G/T)
=> AH=BM
xét t/g BAM = t/g EMA (C-G-C)
XÉT T/G KDB = T/G MDA (G-C-G)
=> KB=AM (2 CẠNH TƯƠNG ỨNG)
TA THẤY BK//AM (G/T)
=> GÓC KBA= GÓC BAM
LẠI CÓ EM//AB HAY HM//AB (E THUỘC HM)
=> GÓC BAM = GÓC AMH
=>GÓC KBA= GÓC AMH
XÉT T/G KBA VÀ T/G AMH (C-G-C)
=> GÓC KAB= GÓC AHM (2 GÓC TƯƠNG ỨNG)
TA THẤY:GÓC KAB+ GÓC BAM+ GÓC MAH= GÓC MAH+ GÓC AMH+ GÓC AHM (VÌ GÓC KAB= GÓC AHM, GÓC BAM= GÓC AMH)
=>GÓC KAB+ GÓC BAM+ GÓC MAH= 180 ĐỘ
HAY K,A,H THẲNG HÀNG
=> ĐPCM
nhớ tick cho mềnh đấy.
A B C M
Tam giác ABM và tam giác ACM có :
AB=AC( GT)
BM=BC(M là trung điểm của BC)
chung cạnh AM
Do đó , tam giác ABM = tam giác ACM
=> AMB=AMC( hai góc tương ứng)
Ta có : AMB+AMC=180\(^0\)
mà AMB=AMC=> AMB=90\(^0\)và \(AMC=90^0\)
Vậy AM vuông hóc với BC