K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

Ta có\(\Delta ABC=\Delta DEF\Rightarrow\hept{\begin{cases}AB=DE\\AC=DF\\BC=EF\end{cases}}\) (1)

Lại có AB + DE = 10 ; EF =  6 ; AC = 7 (2)

Từ (1) và (2) => AB = 5 ; AC = 7 ; BC = 6 

=> Chu vi tam giác ABC  là : 5 + 6 + 7 = 18 cm 

a) Xét ∆ vuông ECB và ∆ vuông DBC ta có : 

BC chung 

ABC = ACB ( ∆ABC cân tại A )

=> ∆ECB = ∆DBC (ch-gn)

=> BD = CE ( tương ứng)

b) Vì ∆ECB = ∆DBC (cmt)

=> EB = DC ( tương ứng) 

Xét ∆ vuông EOB và ∆ vuông DOC có : 

EOB = DOC ( đối đỉnh) 

EB = DC (cmt)

=> ∆EOB = ∆DOC ( cgv-gn)

c) Vì EB + AE = AB 

DC + DA = AC 

Mà AB = AC ( ∆ABC cân tại A )

EB = DC (cmt)

=> AE = AD 

=> ∆AED cân tại A 

Vì ∆EOB = ∆DOC (cmt)

=> EBO = DCO ( tương ứng) 

Xét ∆ vuông AOB và ∆ vuông AOC ta có : 

AE = AD (cmt)

EBO = DCO (cmt)

=> ∆AOB = ∆AOC (cgv-gn)

=> BAO = CAO 

Hay AO là phân giác BAC 

d) Vì ∆ADE cân tại A (cmt)

Mà AO là phân giác BAC

=> AO là trung trực ED

f) Ta có : ∆ABC cân tại A 

Mà AI là trung tuyến 

=> AI là phân giác BAC 

Mà AO là phân giác BAC 

=> A,O,I thẳng hàng 

g) Vì ∆ADE cân tại A 

=> AED = \(\frac{180°-BAC}{2}\)

Vì ∆ABC cân tại A 

=> ABC = \(\frac{180°-BAC}{2}\)

=> AED = ABC

Mà 2 góc này ở vị trí đồng vị 

=> ED //BC

Bài quen quen, hình như là bài mình đăng

4 tháng 4 2018

bạn tự vẽ hình

a, ta có AB^2+AC^2=3^2+4^2=9+16=25

            BC^2=5^2=25

do đó tam giác ABC vuông tại A ( theo pitago)

b,Xét tam giác ADB và tam giác EDB có góc A=góc E ( cùng bằng 90 độ)

                                                            BD chung

                                                             góc ABD=góc EBD ( BD là pg của góc B)

do đó tam giác ADB=tam giác EDB ( cạnh huyền góc nhọn)

=> DA=DE(2 cạnh tương ứng)

c,tự cm

4 tháng 4 2018

bạn ơi mk ko biết làm phần c

D E F N 1 2 M

a,Tam giác DEN và tam giác DFN có:

DN chung

góc D1=góc D2

DE=DF

=> tam giác DEN=tam giác DFN (c.g.c)

b, Ta có: tam giác DEN=tam giác DFN (cma) => NE=NF

c, Vì DE=DF => tam giác DEF cân tại D, mà DM là tia phân giác

=> DM đồng thời là đường trung tuyến

=> ME=MF

d, Vì tam giác DEF cân tại D, mà DM là đường phân giác và là đường trung tuyến

=> DM đồng thời là đường cao

=> DM vuông góc với EF

e,Vì DM là đường trung tuyến, mà đồng thời là đường vuông góc

=> DM là đường trung trực

f,Đề bài câu f có chút nhầm lẫn bn ơi, phải là tam giác EMN=tam giác FMN

Cách 1: (c.c.c)

Tam giác EMN và tam giác FMN có:

MN chung

EM=MF

NE=NF

=> tam giác EMN=tam giác FMN (c.c.c)

Cách 2: (c.g.c)

Vì DM vuông góc với EF

=> NM -----------------------

=> góc NME = góc NMF =90 độ

Tam giác EMN và tam giác FMN có:

NM chung

góc NME= góc NMF (chứng minh trên)

EM=FM

=> tam giác EMN = tam giác FMN (c.g.c)

a) Xét ∆DEM và ∆DFN ta có 

DE = DF (gt)

DM chung 

EDM = FDM ( DM là phân giác )

=> ∆ DEM = ∆DFN (c.g.c)(dpcm)

b) Vì ∆DEM = ∆DFN(cmt)

=> EM = MF ( tương ứng) 

c) Vì DE = DF (gt)

=>∆ DEF cân tại D 

Mà DM là phân giác 

=> M là trung điểm EF ( tính chất đường phân giác trong ∆ cân )

=> EM = MF(1)

d) Trong ∆ cân DEF có DM là phân giác và là trung tuyến 

=> DM vuông góc với EF(2)

e) Từ (1) và (2) 

=> DM là trung trực EF

f) Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NM chung 

EM = MF 

=> ∆NEM = ∆NFM (c.c.c)

Xét ∆NEM và ∆NFM ta có : 

NE = NF 

NMF = NME (DM là trung trực) 

EM = MF 

=> ∆NEM = ∆NFM (c.g.c)